The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extens...The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extensive density functional theory (DFT) calculations, herein we predict that single Pt atom decorated g-C3N4 (Pt@g-C3N4) exhibits excellent catalytic activity and selectivity for the conversion of nitrobenzene into aniline under visible light. The overall activation energy barrier for the hydrogenation of nitrobenzene on single atom Pt@g-C3N4 catalyst is even lower than that of the bare Pt(111) surface. The dissociation of N-0 bonds on single Pt atom is triggered by single hydrogen atom rather than double hydrogen atoms on the Pt(111) surface. Moreover, the Pt@g-C3N4 catalyst exhibits outstanding chemoselectivity towards the common reducible substituents, such as phenyl,-C=C,-C = C and -CHO groups during the hydrogenation. In addition, the doped single Pt atom can significantly enhance the photoconversion efficiency by broadening the light absorption of the pristine g-C3N4 to visible light region. Our results highlight an interesting and experimentally synthesized single-atom photocatalyst (Pt@g-C3N4) for efficient hydrogenation of nitrobenzene to aniline under a sustainable and green approach.展开更多
A small amount of succinimide-N-sulfonic acid efficiently catalyzed the acetylation of a variety alcohols, phenols, thiols, amines and aldehydes with acetic anhydride at room temperature under solvent free conditions....A small amount of succinimide-N-sulfonic acid efficiently catalyzed the acetylation of a variety alcohols, phenols, thiols, amines and aldehydes with acetic anhydride at room temperature under solvent free conditions. This catalyst has the advantages of excellent yields and short reaction times and the reaction can be carried out on a large scale, which makes it potentially useful for industrial applications.展开更多
bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China The differently substituted aromatic nitro compounds were chemoselect...bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China The differently substituted aromatic nitro compounds were chemoselectively reduced by Sm/HOAc system in an ionic liquid medium to afford aromatic amines. Under these conditions the other substituents, such as -X, -CHO, -COOH, -CN, -NHTos and -alkyl, remained intact. The notable advantages of this reaction are its mild conditions, simple operation, short reaction time, high yields and easy recycling of ionic liquid.展开更多
Fine-tuning of the coordination environment of single-atom catalysts(SACs)is effective to optimize their catalytic performances,yet it remains challenging due to the vulnerability of SACs.Herein,we report a new approa...Fine-tuning of the coordination environment of single-atom catalysts(SACs)is effective to optimize their catalytic performances,yet it remains challenging due to the vulnerability of SACs.Herein,we report a new approach to engineering the coordination environment of M-N-C(M=Fe,Co,and Ni)SACs by using glutamic acid as the N/C source and pyrolysis atmosphere as a regulator.Compared with that in N2,NH3 was able to promote the doping of N at 7<700℃yet etch the N-species at higher temperatures,by which the M-N coordination number(CN)and the electronic structure were delicately tuned.It was found that the electron density of Ni single atoms increased with the decrease of Ni-N CN.As a consequence,the capability of Ni-N-C to dissociate H2 was greatly enhanced and a higher catalytic activity in chemoselective hydrogenation of functionalized nitroarenes was achieved.Moreover,this modulation method could be applied to other transition metals including Fe and Co.In particular,the as-synthesized Co-N-C SAC afforded a turnover frequency of 152.3 h~1 with 99%selectivity to 3-vinylaniline in the hydrogenation of 3-nitrostyrene,which was the highest ever reported thus far and was at least one order of magnitude more active than state-of-the-art noble-metal-free M-N-C catalysts,demonstrating the great potential of engineering the coordination environment of SACs.展开更多
α-Oxoketene dithioacetals( compound 1 ) are versatile synthons for organic synthesis due to their specially structural characteristic, that is, the masked ketene is conjugated with the convertible carbonyl in their...α-Oxoketene dithioacetals( compound 1 ) are versatile synthons for organic synthesis due to their specially structural characteristic, that is, the masked ketene is conjugated with the convertible carbonyl in their molecules. Although there have been numerous reports covering the reactions in which they have been taken as 1,3-electrophiles, the reaction at the α-carbon atom of α-oxoketene dithioacetals has seldom been investigated. Junjappa and co-workers found the α- bromination of compound 2 in the presence of NBS led to α-aroyl-α-bromo ketenedithioacetals. However, the flexibility of the functional groups at the α-carbon atom of compound 2 are still limited.展开更多
Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the importantapplications of aromatic amines.However,the separation and recycle of catal...Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the importantapplications of aromatic amines.However,the separation and recycle of catalytic particles to sustainably catalyze are still challenging on accountof their small size.In this communication,we report a novel magnetically recyclable catalyst of Sm2Co17/Cu to chemoselectively reduce3-nitrostyrene into 3-vinylaniline by activating ammonia borane(AB)to yield hydrogen.The Sm2Co17/Cu,composited of 180 nm Sm2Co17nano magnet and 10 nm Cu catalyst nano particles,shows a high conversi on(98%)and a high selectivity(99%)for 3-nitrostyrene under ultrasonic concussion.More importantly,they are easily collected by self-separation method without any magnetic field.As a consequenee,the excellent recyclable feature is acquired even underwent 10 cycles.Our approach provides a green strategy to synthesize magneticallyrecyclable catalysts.展开更多
Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive diso...Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive disorders is unclear, mainly limited by the lack of in situ imaging techniques for spermatozoa glycosylation. We developed an efficient and highly specific spermatozoa glycan imaging technique based on the robust chemoselective labeling of sialic acid(Sia) and N-acetyl-D-galactosamine(Gal/GalNAc). We further proposed a “tandem glycan chemoselective labeling” strategy to achieve simultaneous imaging of two types of glycans on spermatozoa. We applied the developed method to the spermatozoa from oligozoospermic patients and diabetic mice and found that these spermatozoa showed higher levels of Sia and Gal/Gal NAc expression than the normal groups. Moreover, spermatozoa from diabetic mice showed a severe decrease in number, viability, and forward motility, suggesting that in vivo glucose metabolism disorders may lead to an elevated level of spermatozoa glycosylation and have a correlation with the development of oligoasthenotspermia. Our work provides a research tool to reveal the relationship between glycosylation modification and spermatozoa quality, and a promising clue for the development of glycan-based reproductive markers.展开更多
The chemoselective hydrogenation of structurally diverse nitroaromatics is a challenging process.Generally,catalyst activity tends to decrease when excellent selectivity is guaranteed.We here present a novel photocata...The chemoselective hydrogenation of structurally diverse nitroaromatics is a challenging process.Generally,catalyst activity tends to decrease when excellent selectivity is guaranteed.We here present a novel photocatalyst combining amino-functionalized carbon dots(N-CDs)with copper selenite nanoparticles(N-CDs@CuSeO_(3))for simultaneously improving selectivity and activity.Under visible light irradiation,the prepared N-CDs@CuSeO_(3)exhibits 100%catalytic selectivity for the formation of 4-aminostyrene at full conversion of 4-nitrostyrene in aqueous solvent within a few minutes.Such excellent photocatalytic performance is mainly attributed to the precise control of the hydrogen species released from the ammonia borane by means of light-converted electrons upon N-CDs@CuSeO_(3).Besides,the defect states at the interface of N-CDs and CuSeO_(3)enable holes to be trapped for promoting separation and transfer of photogenerated charges,allowing more hydrogen species to participate in catalytic reaction.展开更多
The chemoselective epoxidation of electron-deficient olefins in the presence of electron-rich alkene moieties is reported.This chemoselective epoxidation strategy undergoes a conjugated olefin epoxidation and BHT hydr...The chemoselective epoxidation of electron-deficient olefins in the presence of electron-rich alkene moieties is reported.This chemoselective epoxidation strategy undergoes a conjugated olefin epoxidation and BHT hydroxylation process to give various useful oxiranes in high yields,especially for the 2-substituted 2-trifluoromethyloxiranes.Importantly,this protocol features mild conditions,is transition-metal free,operationally simple,and gram-scalable,and tolerates diverse functional groups.Drug candidate HSD-16 is synthesized smoothly by this protocol.Mechanism studies indicate molecular oxygen is the terminal oxidant and the O-source of the oxiranes.展开更多
The chemoselective hydrogenation ofα,β-unsaturated aldehydes is a key strategy for the synthesis of fine chemicals.Herein,we developed an efficient method of depositing Pt particles on FeO_(x)/SBA-15.This strategy i...The chemoselective hydrogenation ofα,β-unsaturated aldehydes is a key strategy for the synthesis of fine chemicals.Herein,we developed an efficient method of depositing Pt particles on FeO_(x)/SBA-15.This strategy is dependent on using a platinumdivinyltetramethyldisiloxane complex(Pt^(0)-DVTMS)as the precursor,which we demonstrate can be removed through a H_(2)-treatment under mild conditions.This,in turn,allowed for the synthesis of catalysts with well dispersed Pt particles.The presence of FeO_(x) species also aided Pt dispersion;when coated onto SBA-15,FeO_(x) strongly interacted with dissociated Pt species,inhibiting both Pt aggregation and metal leaching.Using cinnamaldehyde as a modelα,β-unsaturated aldehyde,it was demonstrated that this catalyst was highly selective towards the unsaturated alcohol and no obvious loss in activity was observed over five recycles.This catalyst was determined to be significantly more effective than an analogous catalyst prepared using chloroplatinic acid as a precursor,evidencing the importance of using the Pt0-DVTMS precursor.We corroborate the excellent catalytic performance to highly dispersed Pt-species,whereby Pt0 and Pt^(2+) play a critical role in activating H_(2) and the C=O bond.This research demonstrates that the Pt precursor can have a significant impact on the physicochemical properties and thus,the performance of the final catalyst.It also evidences how metal support interactions can dramatically influence selectivity in such hydrogenation reactions.This novel catalyst preparation protocol,using a DVTMS ligand for Pt impregnation,offers a facile approach to the design of multi-component heterogeneous catalysts.展开更多
An annulation reaction of tryptamine-derived isocyanides with hydrazonyl chlorides in the presence of bases was developed.Controlled by different bases,[1+2+3]annulation and[1+2+3]/[2+3]annulation cascade were realize...An annulation reaction of tryptamine-derived isocyanides with hydrazonyl chlorides in the presence of bases was developed.Controlled by different bases,[1+2+3]annulation and[1+2+3]/[2+3]annulation cascade were realized.In the latter reaction,five new chemical bonds as well as three new heterocycles were formed in one step.It showed extremely high efficiency,relatively broad substrate scope,milder reaction conditions,good tolerance of functional groups and good chemoselectivity.展开更多
Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous singl...Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous single-atomic cobalt catalyst with Co-N_(4) active sites was synthesized by using nitrogen-doped graphene derived from acrylonitrile.Single-atomic cobalt was observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)in Co@Nx-C-800.Notably,the density functional theory(DFT)calculation and the extended X-ray absorption fine structures(EXAFS)fitting results indicate that the coordination structure of Co-N is four-coordinated.In this work,the practical hydrogenation of nitroarenes to anilines enabled by Co@Nx-C-800 was established with excellent yields and selectivity,which proved its advantages and potential applications.展开更多
Direct chemoselective oxidation of δ-lactones via highly stable benzyl radical cyclization is reported. The one-pot conversion of premade substituted 5-aryl pentanoic acid and 8-benzyl-1-naphthoic acid in the presenc...Direct chemoselective oxidation of δ-lactones via highly stable benzyl radical cyclization is reported. The one-pot conversion of premade substituted 5-aryl pentanoic acid and 8-benzyl-1-naphthoic acid in the presence of K2S2Os--CuCl2 results to the δ-lactones in moderate to good yields. The advantages of this methodology is using water as a solvent and utilizing available starting materials.展开更多
A highly efficient and facile protocol for the selective reduction of carboxylic acid of Fenofibric acid to corresponding alcohol was developed. The selective reduction was carried out by activation of carboxylic acid...A highly efficient and facile protocol for the selective reduction of carboxylic acid of Fenofibric acid to corresponding alcohol was developed. The selective reduction was carried out by activation of carboxylic acid by mixed anhydride followed by the reaction of sodium borohydride in presence of methanol. This is the first example of chemoselective reduction of carboxylic acid to alcohol in presence of a ketone without any external catalyst or ligand in a single step. The reaction offers wide applicability for the selective carboxylic group reduction methodology. The chemoselective reduction was demonstrated by the reduction of Fenofibric acid, an active metabolite of the drug Fenofibrate, to corresponding alcohol in excellent selectivity, yield, and purity.展开更多
A highly efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes.The novel ionic liquid [HO3S-bPy][FeCl4] with both Lewis and Brφnsted acid sites has been synthesized...A highly efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes.The novel ionic liquid [HO3S-bPy][FeCl4] with both Lewis and Brφnsted acid sites has been synthesized successfully for the reactions.The results show that the catalyst was very efficient for the conjugate addition of amines to electron deficient alkenes with excellent yields in several minutes.This method has several key features including operational simplicity,no need of any solvent,low cost of the catalyst used,high yields,reusability,excellent chemoselectivity,and wide applicability.展开更多
ZrOCl2 was found to be an effective Lewis acid catalyst for the solventless chemoselective conversion of aldehydes into geminal-diacetates in high yields at room temperature. Regeneration of the aldehydes from the ace...ZrOCl2 was found to be an effective Lewis acid catalyst for the solventless chemoselective conversion of aldehydes into geminal-diacetates in high yields at room temperature. Regeneration of the aldehydes from the acetals was also achieved using the same catalyst in water. The beneficial effect of microwave irradiation on the reaction was also described. Other advantages are the very low loading of catalyst, high yields achieved even on a gram scale, and considerably shortened reaction time compared to the conventional method.展开更多
6-azidogalactosyl imidate has been used as a donor to generate 1-(4-aminobutyl)-6-aminogalactose, 6-aminothiotolyl- glycosides of disaccharide, trisaccharide and tetrasaccharide that incorporates 6-azido group and 1-(...6-azidogalactosyl imidate has been used as a donor to generate 1-(4-aminobutyl)-6-aminogalactose, 6-aminothiotolyl- glycosides of disaccharide, trisaccharide and tetrasaccharide that incorporates 6-azido group and 1-(4-tolyl)thio group. Trisaccharide and tetrasaccharide were obtained from lactosyl-based acceptor. The anomeric 1-(4-tolyl)thio group could be used to conjugate with sphingosine analogs to provide the alpha-Gal Sph analogs for library extension from the azido group.展开更多
A chemoselective synthesis of novel indolizine derivatives were reported via three-component reactions of aminopyridines, acetylenic diesters and a-halo ketones. In these reactions, the zwitterion generated from amino...A chemoselective synthesis of novel indolizine derivatives were reported via three-component reactions of aminopyridines, acetylenic diesters and a-halo ketones. In these reactions, the zwitterion generated from aminopyridines and acetylenic diesters reacted with a-halo ketones to produce indolizine skeleton in good to high yields under mild reaction conditions.展开更多
A novel efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes. A series of metal oxides was synthesized for catalyzing the conjugate addition of amines and alkenes. ...A novel efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes. A series of metal oxides was synthesized for catalyzing the conjugate addition of amines and alkenes. After optimizing the reaction conditions, SrO was chosen as the most efficient catalyst for the reactions. The results show that the catalyst is very efficient for the conjugate addition of amines to electron deficient alkenes with the excellent yields in several minutes. Operational simplicity, without need of any solvent, low cost of the catalyst used, high yields, reusability, excellent chemoselectivity and applicability to large-scale reactions are the key features of this methodology.展开更多
文摘The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extensive density functional theory (DFT) calculations, herein we predict that single Pt atom decorated g-C3N4 (Pt@g-C3N4) exhibits excellent catalytic activity and selectivity for the conversion of nitrobenzene into aniline under visible light. The overall activation energy barrier for the hydrogenation of nitrobenzene on single atom Pt@g-C3N4 catalyst is even lower than that of the bare Pt(111) surface. The dissociation of N-0 bonds on single Pt atom is triggered by single hydrogen atom rather than double hydrogen atoms on the Pt(111) surface. Moreover, the Pt@g-C3N4 catalyst exhibits outstanding chemoselectivity towards the common reducible substituents, such as phenyl,-C=C,-C = C and -CHO groups during the hydrogenation. In addition, the doped single Pt atom can significantly enhance the photoconversion efficiency by broadening the light absorption of the pristine g-C3N4 to visible light region. Our results highlight an interesting and experimentally synthesized single-atom photocatalyst (Pt@g-C3N4) for efficient hydrogenation of nitrobenzene to aniline under a sustainable and green approach.
基金the University of Guilan Research Council for the partial support of this work
文摘A small amount of succinimide-N-sulfonic acid efficiently catalyzed the acetylation of a variety alcohols, phenols, thiols, amines and aldehydes with acetic anhydride at room temperature under solvent free conditions. This catalyst has the advantages of excellent yields and short reaction times and the reaction can be carried out on a large scale, which makes it potentially useful for industrial applications.
基金theNationalNaturalScienceFoundationofChina (No .2 9872 0 10 )theNaturalScienceFoundationofZhejiangProvinceChina (No .2 0 0 72 0 33)
文摘bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China The differently substituted aromatic nitro compounds were chemoselectively reduced by Sm/HOAc system in an ionic liquid medium to afford aromatic amines. Under these conditions the other substituents, such as -X, -CHO, -COOH, -CN, -NHTos and -alkyl, remained intact. The notable advantages of this reaction are its mild conditions, simple operation, short reaction time, high yields and easy recycling of ionic liquid.
基金supported by the National Key Technology R&D Program of China(No.2020YFA0710202)the National Natural Science Foundation of China(Nos.U1662130,21690080,21690084,and 21721004)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17020100)。
文摘Fine-tuning of the coordination environment of single-atom catalysts(SACs)is effective to optimize their catalytic performances,yet it remains challenging due to the vulnerability of SACs.Herein,we report a new approach to engineering the coordination environment of M-N-C(M=Fe,Co,and Ni)SACs by using glutamic acid as the N/C source and pyrolysis atmosphere as a regulator.Compared with that in N2,NH3 was able to promote the doping of N at 7<700℃yet etch the N-species at higher temperatures,by which the M-N coordination number(CN)and the electronic structure were delicately tuned.It was found that the electron density of Ni single atoms increased with the decrease of Ni-N CN.As a consequence,the capability of Ni-N-C to dissociate H2 was greatly enhanced and a higher catalytic activity in chemoselective hydrogenation of functionalized nitroarenes was achieved.Moreover,this modulation method could be applied to other transition metals including Fe and Co.In particular,the as-synthesized Co-N-C SAC afforded a turnover frequency of 152.3 h~1 with 99%selectivity to 3-vinylaniline in the hydrogenation of 3-nitrostyrene,which was the highest ever reported thus far and was at least one order of magnitude more active than state-of-the-art noble-metal-free M-N-C catalysts,demonstrating the great potential of engineering the coordination environment of SACs.
基金Supported by the National Natural Science Foundation of China(No. 29862004) Scientific and Technological DevelopmentProgram Foundation of Jilin Province(No. 20040565).
文摘α-Oxoketene dithioacetals( compound 1 ) are versatile synthons for organic synthesis due to their specially structural characteristic, that is, the masked ketene is conjugated with the convertible carbonyl in their molecules. Although there have been numerous reports covering the reactions in which they have been taken as 1,3-electrophiles, the reaction at the α-carbon atom of α-oxoketene dithioacetals has seldom been investigated. Junjappa and co-workers found the α- bromination of compound 2 in the presence of NBS led to α-aroyl-α-bromo ketenedithioacetals. However, the flexibility of the functional groups at the α-carbon atom of compound 2 are still limited.
基金The work was supported by the National Natural Science Foundation of China(Nos.51701109 and 51806115)Natural Science Foundation of Beijing Municipality,China(No.2192007)+3 种基金the China Postdoctoral Science Foundation(No.2018M641132)International S&T Cooperation Program of China(No.2015DFG52020),Key Program of National Natural Science Foundation of China(51331003)Program of Disciplines Construction in Beijing(No.PXM2019_014204_500031).
文摘Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the importantapplications of aromatic amines.However,the separation and recycle of catalytic particles to sustainably catalyze are still challenging on accountof their small size.In this communication,we report a novel magnetically recyclable catalyst of Sm2Co17/Cu to chemoselectively reduce3-nitrostyrene into 3-vinylaniline by activating ammonia borane(AB)to yield hydrogen.The Sm2Co17/Cu,composited of 180 nm Sm2Co17nano magnet and 10 nm Cu catalyst nano particles,shows a high conversi on(98%)and a high selectivity(99%)for 3-nitrostyrene under ultrasonic concussion.More importantly,they are easily collected by self-separation method without any magnetic field.As a consequenee,the excellent recyclable feature is acquired even underwent 10 cycles.Our approach provides a green strategy to synthesize magneticallyrecyclable catalysts.
基金the support from the National Natural Science Foundation of China (Nos.21974067, 22274073, 81971373 and 82001535)the National Key Research and Development Program of China (No.2018YFC1004700)+1 种基金Fundamental Research Funds for the Central Universities (Nos.020514380309,021414380502 and 2022300324)the State Key Laboratory of Analytical Chemistry for Life Science (Nos.5431ZZXM2305 and 5431ZZXM2204)。
文摘Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive disorders is unclear, mainly limited by the lack of in situ imaging techniques for spermatozoa glycosylation. We developed an efficient and highly specific spermatozoa glycan imaging technique based on the robust chemoselective labeling of sialic acid(Sia) and N-acetyl-D-galactosamine(Gal/GalNAc). We further proposed a “tandem glycan chemoselective labeling” strategy to achieve simultaneous imaging of two types of glycans on spermatozoa. We applied the developed method to the spermatozoa from oligozoospermic patients and diabetic mice and found that these spermatozoa showed higher levels of Sia and Gal/Gal NAc expression than the normal groups. Moreover, spermatozoa from diabetic mice showed a severe decrease in number, viability, and forward motility, suggesting that in vivo glucose metabolism disorders may lead to an elevated level of spermatozoa glycosylation and have a correlation with the development of oligoasthenotspermia. Our work provides a research tool to reveal the relationship between glycosylation modification and spermatozoa quality, and a promising clue for the development of glycan-based reproductive markers.
基金Fundamental Research Program of Shanxi Province of China(No.20210302123037)Research Project Supported by Shanxi Scholarship Council of China(No.2022-136)Specialized Research Fund for Sanjin Scholars Program of Shanxi Province of China.
文摘The chemoselective hydrogenation of structurally diverse nitroaromatics is a challenging process.Generally,catalyst activity tends to decrease when excellent selectivity is guaranteed.We here present a novel photocatalyst combining amino-functionalized carbon dots(N-CDs)with copper selenite nanoparticles(N-CDs@CuSeO_(3))for simultaneously improving selectivity and activity.Under visible light irradiation,the prepared N-CDs@CuSeO_(3)exhibits 100%catalytic selectivity for the formation of 4-aminostyrene at full conversion of 4-nitrostyrene in aqueous solvent within a few minutes.Such excellent photocatalytic performance is mainly attributed to the precise control of the hydrogen species released from the ammonia borane by means of light-converted electrons upon N-CDs@CuSeO_(3).Besides,the defect states at the interface of N-CDs and CuSeO_(3)enable holes to be trapped for promoting separation and transfer of photogenerated charges,allowing more hydrogen species to participate in catalytic reaction.
基金supported by the National Natural Science Foundation of China(22271097)the Guangdong Basic and Applied Basic Research Foundation(2022A1515240017)。
文摘The chemoselective epoxidation of electron-deficient olefins in the presence of electron-rich alkene moieties is reported.This chemoselective epoxidation strategy undergoes a conjugated olefin epoxidation and BHT hydroxylation process to give various useful oxiranes in high yields,especially for the 2-substituted 2-trifluoromethyloxiranes.Importantly,this protocol features mild conditions,is transition-metal free,operationally simple,and gram-scalable,and tolerates diverse functional groups.Drug candidate HSD-16 is synthesized smoothly by this protocol.Mechanism studies indicate molecular oxygen is the terminal oxidant and the O-source of the oxiranes.
基金the National Natural Science Foundation(Nos.U1910202 and 21978194)the Key Research and Development Program of Shanxi Province(No.202102090301005)the Fund for Shanxi“1331 Project”.
文摘The chemoselective hydrogenation ofα,β-unsaturated aldehydes is a key strategy for the synthesis of fine chemicals.Herein,we developed an efficient method of depositing Pt particles on FeO_(x)/SBA-15.This strategy is dependent on using a platinumdivinyltetramethyldisiloxane complex(Pt^(0)-DVTMS)as the precursor,which we demonstrate can be removed through a H_(2)-treatment under mild conditions.This,in turn,allowed for the synthesis of catalysts with well dispersed Pt particles.The presence of FeO_(x) species also aided Pt dispersion;when coated onto SBA-15,FeO_(x) strongly interacted with dissociated Pt species,inhibiting both Pt aggregation and metal leaching.Using cinnamaldehyde as a modelα,β-unsaturated aldehyde,it was demonstrated that this catalyst was highly selective towards the unsaturated alcohol and no obvious loss in activity was observed over five recycles.This catalyst was determined to be significantly more effective than an analogous catalyst prepared using chloroplatinic acid as a precursor,evidencing the importance of using the Pt0-DVTMS precursor.We corroborate the excellent catalytic performance to highly dispersed Pt-species,whereby Pt0 and Pt^(2+) play a critical role in activating H_(2) and the C=O bond.This research demonstrates that the Pt precursor can have a significant impact on the physicochemical properties and thus,the performance of the final catalyst.It also evidences how metal support interactions can dramatically influence selectivity in such hydrogenation reactions.This novel catalyst preparation protocol,using a DVTMS ligand for Pt impregnation,offers a facile approach to the design of multi-component heterogeneous catalysts.
基金the National Natural Science Foundation of China(Nos.21772138 and 21672157)the Natural Science Foundation of Jiangsu Province,the Project of the Scientific and Technologic Infrastructure of Suzhou(No.SZS201708)and PAPD.
文摘An annulation reaction of tryptamine-derived isocyanides with hydrazonyl chlorides in the presence of bases was developed.Controlled by different bases,[1+2+3]annulation and[1+2+3]/[2+3]annulation cascade were realized.In the latter reaction,five new chemical bonds as well as three new heterocycles were formed in one step.It showed extremely high efficiency,relatively broad substrate scope,milder reaction conditions,good tolerance of functional groups and good chemoselectivity.
基金supported by the National Natural Science Foundation of China(Nos.22061017 and 21862006)Science and technology program of Gansu Province(Nos.22YF7GG127 and 23JRRG0002)Hexi University Research Start-up Fund Project(Nos.KYQD2020013).
文摘Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous single-atomic cobalt catalyst with Co-N_(4) active sites was synthesized by using nitrogen-doped graphene derived from acrylonitrile.Single-atomic cobalt was observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)in Co@Nx-C-800.Notably,the density functional theory(DFT)calculation and the extended X-ray absorption fine structures(EXAFS)fitting results indicate that the coordination structure of Co-N is four-coordinated.In this work,the practical hydrogenation of nitroarenes to anilines enabled by Co@Nx-C-800 was established with excellent yields and selectivity,which proved its advantages and potential applications.
文摘Direct chemoselective oxidation of δ-lactones via highly stable benzyl radical cyclization is reported. The one-pot conversion of premade substituted 5-aryl pentanoic acid and 8-benzyl-1-naphthoic acid in the presence of K2S2Os--CuCl2 results to the δ-lactones in moderate to good yields. The advantages of this methodology is using water as a solvent and utilizing available starting materials.
文摘A highly efficient and facile protocol for the selective reduction of carboxylic acid of Fenofibric acid to corresponding alcohol was developed. The selective reduction was carried out by activation of carboxylic acid by mixed anhydride followed by the reaction of sodium borohydride in presence of methanol. This is the first example of chemoselective reduction of carboxylic acid to alcohol in presence of a ketone without any external catalyst or ligand in a single step. The reaction offers wide applicability for the selective carboxylic group reduction methodology. The chemoselective reduction was demonstrated by the reduction of Fenofibric acid, an active metabolite of the drug Fenofibrate, to corresponding alcohol in excellent selectivity, yield, and purity.
基金supported by the National Key Project of Scientific and Technical Supporting Programs funded by Ministry of Science & Technol-ogy of China (2006BAE03B06)Shanghai Leading Academic Discipline Project (B409)Shanghai International Cooperation of Science and Technology Project (06SR07101)
文摘A highly efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes.The novel ionic liquid [HO3S-bPy][FeCl4] with both Lewis and Brφnsted acid sites has been synthesized successfully for the reactions.The results show that the catalyst was very efficient for the conjugate addition of amines to electron deficient alkenes with excellent yields in several minutes.This method has several key features including operational simplicity,no need of any solvent,low cost of the catalyst used,high yields,reusability,excellent chemoselectivity,and wide applicability.
文摘ZrOCl2 was found to be an effective Lewis acid catalyst for the solventless chemoselective conversion of aldehydes into geminal-diacetates in high yields at room temperature. Regeneration of the aldehydes from the acetals was also achieved using the same catalyst in water. The beneficial effect of microwave irradiation on the reaction was also described. Other advantages are the very low loading of catalyst, high yields achieved even on a gram scale, and considerably shortened reaction time compared to the conventional method.
文摘6-azidogalactosyl imidate has been used as a donor to generate 1-(4-aminobutyl)-6-aminogalactose, 6-aminothiotolyl- glycosides of disaccharide, trisaccharide and tetrasaccharide that incorporates 6-azido group and 1-(4-tolyl)thio group. Trisaccharide and tetrasaccharide were obtained from lactosyl-based acceptor. The anomeric 1-(4-tolyl)thio group could be used to conjugate with sphingosine analogs to provide the alpha-Gal Sph analogs for library extension from the azido group.
基金supported by the Research Council of the University of Mazandaran,Iran
文摘A chemoselective synthesis of novel indolizine derivatives were reported via three-component reactions of aminopyridines, acetylenic diesters and a-halo ketones. In these reactions, the zwitterion generated from aminopyridines and acetylenic diesters reacted with a-halo ketones to produce indolizine skeleton in good to high yields under mild reaction conditions.
基金Supported by the National Key Project of ScientificTechnical Supporting Programs Funded by Ministry of Science & Technology of China(No.2006BAE03B06)
文摘A novel efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes. A series of metal oxides was synthesized for catalyzing the conjugate addition of amines and alkenes. After optimizing the reaction conditions, SrO was chosen as the most efficient catalyst for the reactions. The results show that the catalyst is very efficient for the conjugate addition of amines to electron deficient alkenes with the excellent yields in several minutes. Operational simplicity, without need of any solvent, low cost of the catalyst used, high yields, reusability, excellent chemoselectivity and applicability to large-scale reactions are the key features of this methodology.