With the pursuit of new cancer therapies and more effective treatment to diseases in the last decades, nanotechnology has been an important ally for healthcare professionals and patients in critical clinical condition...With the pursuit of new cancer therapies and more effective treatment to diseases in the last decades, nanotechnology has been an important ally for healthcare professionals and patients in critical clinical conditions. Nanomaterials offer an alternative way to deliver toxic chemotherapeutic drugs to specific biological tissues, specific cells or specific microbial beings, resulting in avoidance of strong side effects or resilience to effective drugs. Among these materials, stands out the hydroxyapatite nanoparticles, a ceramic class of calcium phosphates that present chemical and structural similarities with the mineral phase of the human skeleton’s bone matrix, resulting in important biological features, such as biocompatibility, osteoconductive, osteoinduction and osteoaffinity, which led to a lot of scientific researches to apply these nanoparticles for bone diseases diagnosis and therapeutics. Due to the hydroxyapatite biological activities and due to the possibility to promote chemical and physical modifications in these nanoparticles, they can interact with biological cells or microorganisms in different ways, resulting in multiple potentialities to be explored such as apoptosis induction to cancerous cells, osteogenesis promotion, cellular proliferation, angiogenesis and tissue recovery, in addition to promote cell adhesion and cell uptake. Furthermore, chemical and physical modifications, such as surface functionalization, dopant inclusions and radiolabeling process, allow scientists to track the particle activities in biological environments. In the last decades of scientific productions, the literature brings together important data on how hydroxyapatite nanoparticles interact with biological tissues and such data are crucial for the development of more effective therapeutic and diagnostic agents. In the present review, we intend to compile scholarly information to explore the biological relations of nanosized hydroxyapatite with the human cellular environment and the feasible modifications that may 展开更多
The uniformity of the colour in leathers for the furnishing and <i>automotive</i> sectors is a particularly important feature, especially for white or light-coloured </span></span&g...The uniformity of the colour in leathers for the furnishing and <i>automotive</i> sectors is a particularly important feature, especially for white or light-coloured </span></span><span style="white-space:normal;"><span style="font-family:"">articles, intended to the high-end market;on these articles any colour alteration can be very visible and unpleasant, with possible technical and economic consequences for the producers. In a previous study, we analysed the possible causes behind the formation of some peculiar pink/salmon stains on different kinds of white/beige/light-coloured leather furnishing items, where we focalized our attention on TiO<sub>2</sub> properties and its possible interaction with some organic-based antioxidants. In recent years, due to many other similar cases of defects </span></span><span style="white-space:normal;"><span style="font-family:"">that </span></span><span style="white-space:normal;"><span style="font-family:"">occurred to tanners and to upholstery traders, we decided to enhance the investigations concerning this topic. More in detail we analysed, defective leathers, powder pigments and chemicals, in order to identify the possible role of some substances in this issue, with particular reference to some antioxidants and aluminosilicates, where several diagnostic techniques have been utilised, as ATR-IR (Attenuated Total Reflectance IR Spectroscopy), SEM-EDX (Scanning Electron Microscopy</span></span><span style="white-space:normal;"><span style="font-family:"">-</span></span><span style="white-space:normal;"><span style="font-family:"">Energy Dispersive X-ray Analysis), XRF (X-ray Fluorescence spectrometry)</span></span><span style="white-space:normal;"><span style="font-family:"">,</span></span><span style="white-space:normal;"><span style="font-family:""> GC-MS (Gas Chromatography-Mass Spectrometry), and DSC/TGA (Differential scanning calorimetry/Thermogravimetry) equipment.展开更多
文摘With the pursuit of new cancer therapies and more effective treatment to diseases in the last decades, nanotechnology has been an important ally for healthcare professionals and patients in critical clinical conditions. Nanomaterials offer an alternative way to deliver toxic chemotherapeutic drugs to specific biological tissues, specific cells or specific microbial beings, resulting in avoidance of strong side effects or resilience to effective drugs. Among these materials, stands out the hydroxyapatite nanoparticles, a ceramic class of calcium phosphates that present chemical and structural similarities with the mineral phase of the human skeleton’s bone matrix, resulting in important biological features, such as biocompatibility, osteoconductive, osteoinduction and osteoaffinity, which led to a lot of scientific researches to apply these nanoparticles for bone diseases diagnosis and therapeutics. Due to the hydroxyapatite biological activities and due to the possibility to promote chemical and physical modifications in these nanoparticles, they can interact with biological cells or microorganisms in different ways, resulting in multiple potentialities to be explored such as apoptosis induction to cancerous cells, osteogenesis promotion, cellular proliferation, angiogenesis and tissue recovery, in addition to promote cell adhesion and cell uptake. Furthermore, chemical and physical modifications, such as surface functionalization, dopant inclusions and radiolabeling process, allow scientists to track the particle activities in biological environments. In the last decades of scientific productions, the literature brings together important data on how hydroxyapatite nanoparticles interact with biological tissues and such data are crucial for the development of more effective therapeutic and diagnostic agents. In the present review, we intend to compile scholarly information to explore the biological relations of nanosized hydroxyapatite with the human cellular environment and the feasible modifications that may
文摘The uniformity of the colour in leathers for the furnishing and <i>automotive</i> sectors is a particularly important feature, especially for white or light-coloured </span></span><span style="white-space:normal;"><span style="font-family:"">articles, intended to the high-end market;on these articles any colour alteration can be very visible and unpleasant, with possible technical and economic consequences for the producers. In a previous study, we analysed the possible causes behind the formation of some peculiar pink/salmon stains on different kinds of white/beige/light-coloured leather furnishing items, where we focalized our attention on TiO<sub>2</sub> properties and its possible interaction with some organic-based antioxidants. In recent years, due to many other similar cases of defects </span></span><span style="white-space:normal;"><span style="font-family:"">that </span></span><span style="white-space:normal;"><span style="font-family:"">occurred to tanners and to upholstery traders, we decided to enhance the investigations concerning this topic. More in detail we analysed, defective leathers, powder pigments and chemicals, in order to identify the possible role of some substances in this issue, with particular reference to some antioxidants and aluminosilicates, where several diagnostic techniques have been utilised, as ATR-IR (Attenuated Total Reflectance IR Spectroscopy), SEM-EDX (Scanning Electron Microscopy</span></span><span style="white-space:normal;"><span style="font-family:"">-</span></span><span style="white-space:normal;"><span style="font-family:"">Energy Dispersive X-ray Analysis), XRF (X-ray Fluorescence spectrometry)</span></span><span style="white-space:normal;"><span style="font-family:"">,</span></span><span style="white-space:normal;"><span style="font-family:""> GC-MS (Gas Chromatography-Mass Spectrometry), and DSC/TGA (Differential scanning calorimetry/Thermogravimetry) equipment.