The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电...通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g^(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g^(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。展开更多
Nanoscale Kirkendall effect has been widely used for rationally fabricating high-quality hollow nanocrystals, but often requires the intrinsic diffusion coefficient of out-diffusion materials higher than that of in-di...Nanoscale Kirkendall effect has been widely used for rationally fabricating high-quality hollow nanocrystals, but often requires the intrinsic diffusion coefficient of out-diffusion materials higher than that of in-diffusion components. Here we demonstrate an unexpected Kirkendall effect that occurs in diffusing intrinsically faster Cu atoms into Pd icosahedra, leading to the formation of PdCu alloyed hollow nanocrystals. The control experiment with Pd octahedra replacing icosahedra indicates the critical role of twin boundaries in facilitating such unexpected Kirkendall effect. In addition, geometric phase analysis and density functional theory calculation show that out-diffusion of Pd atoms in the icosahedra is faster than in-diffusion of Cu atoms, particularly through the twin boundaries, upon the strain gradient with an inward distribution from tensile to compressive strains. The unexpected Kirkendall effect is also found in the interdiffusion of Ag and Pd atoms in Pd icosahedra. Our finds break the limitation of the intrinsic diffusion coefficient for the synthesis of hollow nanocrystals through Kirkendall effect and are expected to enormously enrich the family of hollow nanocrystals which have shown great potential in broad areas, such as fine chemical production, energy storage and conversion, and environmental protection. This work also provides a deep understanding in the diffusion behavior of atoms upon the strain gradient.展开更多
The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutti...The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutting tests. It shows that vacuum sintering of WC-Ti(C, N)-TaC-Co cemented carbides results in the formation of a surface ductile zone. The ductile zone prevents crack propagation and leads to the increase of transverse rupture strength of the substrate. The impact resistance of coated gradient inserts was obviously improved on the basis of maintaining resistance to abrasion and the forming mechanism of the gradient structure was also analyzed.展开更多
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
文摘通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g^(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g^(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。
基金This work was supported by the National Science Foundation of China(Nos.51522103,51871200,and 61721005)and the National Program for Support of Top-Notch Young Professionals.
文摘Nanoscale Kirkendall effect has been widely used for rationally fabricating high-quality hollow nanocrystals, but often requires the intrinsic diffusion coefficient of out-diffusion materials higher than that of in-diffusion components. Here we demonstrate an unexpected Kirkendall effect that occurs in diffusing intrinsically faster Cu atoms into Pd icosahedra, leading to the formation of PdCu alloyed hollow nanocrystals. The control experiment with Pd octahedra replacing icosahedra indicates the critical role of twin boundaries in facilitating such unexpected Kirkendall effect. In addition, geometric phase analysis and density functional theory calculation show that out-diffusion of Pd atoms in the icosahedra is faster than in-diffusion of Cu atoms, particularly through the twin boundaries, upon the strain gradient with an inward distribution from tensile to compressive strains. The unexpected Kirkendall effect is also found in the interdiffusion of Ag and Pd atoms in Pd icosahedra. Our finds break the limitation of the intrinsic diffusion coefficient for the synthesis of hollow nanocrystals through Kirkendall effect and are expected to enormously enrich the family of hollow nanocrystals which have shown great potential in broad areas, such as fine chemical production, energy storage and conversion, and environmental protection. This work also provides a deep understanding in the diffusion behavior of atoms upon the strain gradient.
文摘The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutting tests. It shows that vacuum sintering of WC-Ti(C, N)-TaC-Co cemented carbides results in the formation of a surface ductile zone. The ductile zone prevents crack propagation and leads to the increase of transverse rupture strength of the substrate. The impact resistance of coated gradient inserts was obviously improved on the basis of maintaining resistance to abrasion and the forming mechanism of the gradient structure was also analyzed.