Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reacti...Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reactive conditions,leading to changes in their catalytic function.Elucidating and understanding these transformations are crucial for establishing relevant structureperformance relationships and for the rational design of alloy-based catalysts.In this work,we used CuZn alloy nanoparticles(NPs)as a model material system and employed in situ transmission electron microscopy(TEM)to investigate the structural and chemical changes of CuZn NPs under H_(2),O_(2)and their mixture.Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures,starting with gradual leaching and segregation of Zn,followed by oxidation at the NP surface.The remaining copper at the core of particles can then engage in dynamic behavior,eventually freeing itself from the zinc oxide shell.The structural dynamics arises from an oscillatory phase transition between Cu and Cu_(2)O and is correlated with the catalytic water formation,as confirmed by in situ mass spectrometry(MS).Under pure H_(2)or O_(2)atmosphere,we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture.These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres,particularly for those containing elements with distinct redox properties,necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships.展开更多
Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing...Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.展开更多
基金supported by the Swedish Research council under contract 2018-07152the Swedish Governmental Agency for Innovation Systems under contract 2018-04969+1 种基金Formas under contract 2019-02496X.H.thanks 1000 talent youth project,Fuzhou University and Qingyuan Innovation Laboratory for the financial support.
文摘Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reactive conditions,leading to changes in their catalytic function.Elucidating and understanding these transformations are crucial for establishing relevant structureperformance relationships and for the rational design of alloy-based catalysts.In this work,we used CuZn alloy nanoparticles(NPs)as a model material system and employed in situ transmission electron microscopy(TEM)to investigate the structural and chemical changes of CuZn NPs under H_(2),O_(2)and their mixture.Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures,starting with gradual leaching and segregation of Zn,followed by oxidation at the NP surface.The remaining copper at the core of particles can then engage in dynamic behavior,eventually freeing itself from the zinc oxide shell.The structural dynamics arises from an oscillatory phase transition between Cu and Cu_(2)O and is correlated with the catalytic water formation,as confirmed by in situ mass spectrometry(MS).Under pure H_(2)or O_(2)atmosphere,we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture.These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres,particularly for those containing elements with distinct redox properties,necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships.
基金the National Natural Science Foundation of China(51905324)the Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0545)the Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology(2018BJ-14)。
文摘Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.