The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model f...The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model for gate regulation was established in this study. The process of water flow was simulated under different boundary conditions. The influence of gate regulation speed and channel operation methods on flow transition process was analyzed. The numerical results show that under the same conditions, with increasing regulation speed of the gate, the change rates of discharge and water level increase, while the response time of channel becomes shorter, and ultimately the discharge and water level will transit to the same equilibrium states. Moreover, the flow is easier to reach stable state, if the water level in front of the sluice is kept constant, instead of,behind the sluice. This study will be important to the scheme design of automatic operation control in water conveyance channels.展开更多
The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)usin...The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)using heralded high-fidelity parity-check gate(HH-PCG),which can increase the entanglement of nonlocal two-photon polarization mixed state.The HH-PCG is constructed by the input-output process of nitrogen-vacancy(NV)center in diamond embedded in a single-sided optical cavity,where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector.As the unwanted components can be filtrated due to the heralded function,the fidelity of the EPP scheme can be enhanced considerably,which will increase the fidelity of quantum communication processing.展开更多
基金supported by the National Natural SciencFoundation of China (Grant No. 59879016)the National BasiResearch Program of China (973 Program, Grant No2003CB415200)
文摘The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model for gate regulation was established in this study. The process of water flow was simulated under different boundary conditions. The influence of gate regulation speed and channel operation methods on flow transition process was analyzed. The numerical results show that under the same conditions, with increasing regulation speed of the gate, the change rates of discharge and water level increase, while the response time of channel becomes shorter, and ultimately the discharge and water level will transit to the same equilibrium states. Moreover, the flow is easier to reach stable state, if the water level in front of the sluice is kept constant, instead of,behind the sluice. This study will be important to the scheme design of automatic operation control in water conveyance channels.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11674033,11474026,11604226,and 11475021)Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China(Grant Nos.KM201710028005 and CIT&TCD201904080)
文摘The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)using heralded high-fidelity parity-check gate(HH-PCG),which can increase the entanglement of nonlocal two-photon polarization mixed state.The HH-PCG is constructed by the input-output process of nitrogen-vacancy(NV)center in diamond embedded in a single-sided optical cavity,where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector.As the unwanted components can be filtrated due to the heralded function,the fidelity of the EPP scheme can be enhanced considerably,which will increase the fidelity of quantum communication processing.