讨论简谐激励作用下含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔现象.首先用Chebyshev多项式逼近法将随机Duffing-van der Pol系统化成与其等价的确定性系统,然后通过等价确定性系统来探索该系统的倍周期分岔现象.数值...讨论简谐激励作用下含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔现象.首先用Chebyshev多项式逼近法将随机Duffing-van der Pol系统化成与其等价的确定性系统,然后通过等价确定性系统来探索该系统的倍周期分岔现象.数值模拟显示随机Duffing-van der Pol系统与均值参数系统有着类似的倍周期分岔行为,同时指出,随机参数系统的倍周期分岔有其自身独有的特点.文中的主要数值结果表明Chebyshev多项式逼近法是研究非线性随机参数系统动力学问题的一种有效方法.展开更多
For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corr...For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p 【 ∞ and 2≤ q 【 ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.展开更多
文摘讨论简谐激励作用下含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔现象.首先用Chebyshev多项式逼近法将随机Duffing-van der Pol系统化成与其等价的确定性系统,然后通过等价确定性系统来探索该系统的倍周期分岔现象.数值模拟显示随机Duffing-van der Pol系统与均值参数系统有着类似的倍周期分岔行为,同时指出,随机参数系统的倍周期分岔有其自身独有的特点.文中的主要数值结果表明Chebyshev多项式逼近法是研究非线性随机参数系统动力学问题的一种有效方法.
基金supported by National Natural Science Foundation of China (Grant No.10471010)
文摘For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p 【 ∞ and 2≤ q 【 ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.