A Chebyshev fitting way for a propeller atlas across four quadrants is discussed. As an example, Chebyshev polynomial fitting results and its error analysis are given. Because it’s difficult generally to get a propel...A Chebyshev fitting way for a propeller atlas across four quadrants is discussed. As an example, Chebyshev polynomial fitting results and its error analysis are given. Because it’s difficult generally to get a propeller atlas across four quadrants, a way is used to construct an alternative with higher accuracy based on the properties. As an application example, an alternative for the propeller property of a Deep Submergence Vehicle across four quadrants is given practically and a simulation model of the four quadrants propeller for dynamic condition is set up. The model lays a foundation for DSV full operating-condition movement simulation. A lot of simulation work shows that the results are very close to the practical data and, therefore, are effective.展开更多
In view of generating optimal trajectories of Bolza problems, standard Chebyshev pseudospectral (PS) method makes the points' accumulation near the extremities and rarefaction of nodes close to the center of interv...In view of generating optimal trajectories of Bolza problems, standard Chebyshev pseudospectral (PS) method makes the points' accumulation near the extremities and rarefaction of nodes close to the center of interval, which causes an ill-condition of differentiation matrix and an oscillation of the optimal solution. For improvement upon the difficulties, a mapped Chebyshev pseudospectral method is proposed. A conformal map is applied to Chebyshev points to move the points closer to equidistant nodes. Condition number and spectral radius of differentiation matrices from both methods are presented to show the improvement. Furthermore, the modification keeps the Chebyshev pseudospectral method's advantage, the spectral convergence rate. Based on three numerical examples, a comparison of the execution time, convergence and accuracy is presented among the standard Chebyshev pseudospectral method, other collocation methods and the proposed one. In one example, the error of results from mapped Chebyshev pseudospectral method is reduced to 5% of that from standard Chebyshev pseudospectral method.展开更多
For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corr...For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p 【 ∞ and 2≤ q 【 ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.展开更多
Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject...Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.展开更多
By studying the properties of Chebyshev polynomials, some specific and mean-ingful identities for the calculation of square of Chebyshev polynomials, Fibonacci numbersand Lucas numbers are obtained.
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a mic...Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the z-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper, the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.展开更多
The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generali...The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .展开更多
NURBS curve is one of the most commonly used tools in CAD systems and geometric modeling for its various specialties, which means that its shape is locally adjustable as well as its continuity order, and it can repres...NURBS curve is one of the most commonly used tools in CAD systems and geometric modeling for its various specialties, which means that its shape is locally adjustable as well as its continuity order, and it can represent a conic curve precisely. But how to do degree reduction of NURBS curves in a fast and efficient way still remains a puzzling problem. By applying the theory of the best uniform approximation of Chebyshev polynomials and the explicit matrix representation of NURBS curves, this paper gives the necessary and sufficient condition for degree reducible NURBS curves in an explicit form. And a new way of doing degree reduction of NURBS curves is also presented, including the multi-degree reduction of a NURBS curve on each knot span and the multi-degree reduction of a whole NURBS curve. This method is easy to carry out, and only involves simple calculations. It provides a new way of doing degree reduction of NURBS curves, which can be widely used in computer graphics and industrial design.展开更多
文摘A Chebyshev fitting way for a propeller atlas across four quadrants is discussed. As an example, Chebyshev polynomial fitting results and its error analysis are given. Because it’s difficult generally to get a propeller atlas across four quadrants, a way is used to construct an alternative with higher accuracy based on the properties. As an application example, an alternative for the propeller property of a Deep Submergence Vehicle across four quadrants is given practically and a simulation model of the four quadrants propeller for dynamic condition is set up. The model lays a foundation for DSV full operating-condition movement simulation. A lot of simulation work shows that the results are very close to the practical data and, therefore, are effective.
基金supported by the National Natural Science Foundation of China (No.61203022)the Aeronautical Science Foundation of China (2012CZ51029)
文摘In view of generating optimal trajectories of Bolza problems, standard Chebyshev pseudospectral (PS) method makes the points' accumulation near the extremities and rarefaction of nodes close to the center of interval, which causes an ill-condition of differentiation matrix and an oscillation of the optimal solution. For improvement upon the difficulties, a mapped Chebyshev pseudospectral method is proposed. A conformal map is applied to Chebyshev points to move the points closer to equidistant nodes. Condition number and spectral radius of differentiation matrices from both methods are presented to show the improvement. Furthermore, the modification keeps the Chebyshev pseudospectral method's advantage, the spectral convergence rate. Based on three numerical examples, a comparison of the execution time, convergence and accuracy is presented among the standard Chebyshev pseudospectral method, other collocation methods and the proposed one. In one example, the error of results from mapped Chebyshev pseudospectral method is reduced to 5% of that from standard Chebyshev pseudospectral method.
基金supported by National Natural Science Foundation of China (Grant No.10471010)
文摘For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p 【 ∞ and 2≤ q 【 ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872017, 90816024 and 10876100)111 Project (Grant No. B07009)
文摘Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.
基金Supported by the Natural Science Foundation of Shaanxi Province(2002A11)Supported by the Shangluo Teacher's College Research Foundation(SKY2106)
文摘By studying the properties of Chebyshev polynomials, some specific and mean-ingful identities for the calculation of square of Chebyshev polynomials, Fibonacci numbersand Lucas numbers are obtained.
基金The project was supported by the National Natural Science Foundation of China (10472054). The English text was polished by Boyi Wang
文摘Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the z-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper, the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.
文摘The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .
文摘NURBS curve is one of the most commonly used tools in CAD systems and geometric modeling for its various specialties, which means that its shape is locally adjustable as well as its continuity order, and it can represent a conic curve precisely. But how to do degree reduction of NURBS curves in a fast and efficient way still remains a puzzling problem. By applying the theory of the best uniform approximation of Chebyshev polynomials and the explicit matrix representation of NURBS curves, this paper gives the necessary and sufficient condition for degree reducible NURBS curves in an explicit form. And a new way of doing degree reduction of NURBS curves is also presented, including the multi-degree reduction of a NURBS curve on each knot span and the multi-degree reduction of a whole NURBS curve. This method is easy to carry out, and only involves simple calculations. It provides a new way of doing degree reduction of NURBS curves, which can be widely used in computer graphics and industrial design.