目的针对仪表、电梯等标牌上一些字符间距较小,传统分割方法分割不准确,字符识别率不高的问题,提出了一种标牌粘连字符自适应定位分割重建识别算法。方法首先对标牌图像进行中值滤波、二值化等预处理;其次运用数学形态学方法对预处理后...目的针对仪表、电梯等标牌上一些字符间距较小,传统分割方法分割不准确,字符识别率不高的问题,提出了一种标牌粘连字符自适应定位分割重建识别算法。方法首先对标牌图像进行中值滤波、二值化等预处理;其次运用数学形态学方法对预处理后的图像进行开运算及腐蚀,将字符间一些无用的信息去掉,增大字符间距;继而通过形心算法找出每个字符的几何中心,并通过Sobel边缘检测算子根据几何中心获取每个字符边框,建立ROI(region of interest),再返回标牌原图利用已经建立的ROI从中分割字符,依据国家字符间距相关标准,在分割的每个字符后加一定像素宽的矩形间隔条后重建字符图像,再进行OCR(optical character recognition)字符识别。结果经过对993块标牌进行字符识别实验,算法的识别率达到95.7%。结论实验结果表明本文算法是对标牌字符识别的一种有效算法。展开更多
文摘目的针对仪表、电梯等标牌上一些字符间距较小,传统分割方法分割不准确,字符识别率不高的问题,提出了一种标牌粘连字符自适应定位分割重建识别算法。方法首先对标牌图像进行中值滤波、二值化等预处理;其次运用数学形态学方法对预处理后的图像进行开运算及腐蚀,将字符间一些无用的信息去掉,增大字符间距;继而通过形心算法找出每个字符的几何中心,并通过Sobel边缘检测算子根据几何中心获取每个字符边框,建立ROI(region of interest),再返回标牌原图利用已经建立的ROI从中分割字符,依据国家字符间距相关标准,在分割的每个字符后加一定像素宽的矩形间隔条后重建字符图像,再进行OCR(optical character recognition)字符识别。结果经过对993块标牌进行字符识别实验,算法的识别率达到95.7%。结论实验结果表明本文算法是对标牌字符识别的一种有效算法。