The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity i...The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char's reactivity. Addi- tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).展开更多
文摘The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char's reactivity. Addi- tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).