An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the phot...An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.展开更多
We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. Th...We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates, as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.展开更多
Results of research into a compound channel having width ratio (a) in excess of 11 are presented in the form of boun-dary shear distributions across the compound cross section. New relationship is derived between th...Results of research into a compound channel having width ratio (a) in excess of 11 are presented in the form of boun-dary shear distributions across the compound cross section. New relationship is derived between the percentage of shear carried by the flood plains (%S fp ) and the percentage of area occupied by the flood plains (%Afp ) . The equation so derived is taken as the basis to develop a new methodology to predict the stage discharge relationship specifically for wide compound channels using Darcy's friction factor ( f ) for the main channel and flood plain regions. The methodology also is used for compound channels with smaller width ratios by applying the appropriate relation for %S fp derived earlier by different researchers and seems to work well. Next, as a corollary to the methodology, separate formulae are proposed to estimate flow distribution in main channel and flood plain regions. The proposed method and its corollary are tested for their validity against well-published small-scale data series of pre-vious researchers along with some large-scale data series from EPSRC-FCF (A-Series) compound channel experiments and very good agreement is observed between the measured values and predicted values for total flow as well as zonal distribution of flow. The methodology is also applied to some compound river section data published in literature and is found to serve well the purpose of predicting flow in real world application. This new method gives the least RMS value of error for discharge prediction compared with some other well-known methods used for estimating stage-discharge relation in compound channels by considering all data sets.展开更多
This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is int...This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is introduced to take into account the effect of the secondary flow. The modeling results agree well with the experimental results from the Science and Engineering Research Council-Flood Channel Facility (SERC-FCF). Based on the SERC-FCF, the effects of geography on the secondary flow coefficient and the reason for such effects are analyzed. The modeling results show that the intensity of the secondary flow is related to the geometry of the section of the compound channel, and the sign of the K-value is related to the rotating direction of the secondary flow cell. This study provides a scientific reference to the selection of theK-value.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10447106, and Beijing Education Committee under Grant No XK100270454.
文摘An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.
基金Supported by the Key Project of the Ministry of Education of China (206103), the China Postdoctoral Science Foundation (2005037695), the National Natural Science Foundation of China under Grant Nos 10325523 and 90203018, the Scientific Research Fund of Hunan Provincial Education Bureau (05B041), and the Natural Science Foundation of Hunan Province under Grant Nos 04JJ3017 and 05JJ30012.
文摘We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates, as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.
基金support received by the second author from DST India(Grant No.SR/S3/MERC/066/2008)
文摘Results of research into a compound channel having width ratio (a) in excess of 11 are presented in the form of boun-dary shear distributions across the compound cross section. New relationship is derived between the percentage of shear carried by the flood plains (%S fp ) and the percentage of area occupied by the flood plains (%Afp ) . The equation so derived is taken as the basis to develop a new methodology to predict the stage discharge relationship specifically for wide compound channels using Darcy's friction factor ( f ) for the main channel and flood plain regions. The methodology also is used for compound channels with smaller width ratios by applying the appropriate relation for %S fp derived earlier by different researchers and seems to work well. Next, as a corollary to the methodology, separate formulae are proposed to estimate flow distribution in main channel and flood plain regions. The proposed method and its corollary are tested for their validity against well-published small-scale data series of pre-vious researchers along with some large-scale data series from EPSRC-FCF (A-Series) compound channel experiments and very good agreement is observed between the measured values and predicted values for total flow as well as zonal distribution of flow. The methodology is also applied to some compound river section data published in literature and is found to serve well the purpose of predicting flow in real world application. This new method gives the least RMS value of error for discharge prediction compared with some other well-known methods used for estimating stage-discharge relation in compound channels by considering all data sets.
基金Project supported by the National Natural Science Foundation of China (No. 50749031)the Doctoral Fund of the Ministry of Education of China (No. 20070486022)
文摘This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is introduced to take into account the effect of the secondary flow. The modeling results agree well with the experimental results from the Science and Engineering Research Council-Flood Channel Facility (SERC-FCF). Based on the SERC-FCF, the effects of geography on the secondary flow coefficient and the reason for such effects are analyzed. The modeling results show that the intensity of the secondary flow is related to the geometry of the section of the compound channel, and the sign of the K-value is related to the rotating direction of the secondary flow cell. This study provides a scientific reference to the selection of theK-value.