A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding cr...A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11172050 and11672047)the Science and Technology Foundation of China Academy of Engineering Physics(No.2013A0202011)
文摘A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)