Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)...Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.展开更多
Bone marrow mesenchymal stem cells(BMSCs),periosteal stem cells(PSCs),and other bone stem cells originate from embryonic bone formation,but their function and stem cell characteristics such as proliferation ability an...Bone marrow mesenchymal stem cells(BMSCs),periosteal stem cells(PSCs),and other bone stem cells originate from embryonic bone formation,but their function and stem cell characteristics such as proliferation ability and differentiation ability change at different anatomical locations.Perichondral-derived stem cells(PCSCs)are more closely related to PSCs in origin and function,usually used to be studied together with PSCs as one type of stem cell.However,this leads to the ignoration of the PCSCs'characteristics.Since the anatomical locations of these two types of stem cells diverse,PCSCs should have some differences from PSCs.In this study,the PCSCs in the perichondrium surrounding the growth plate cartilage expressed CTSK and CD200 same as PSCs.However,when compared the stem cell characteristics of PCSCs with that of PSCs,PCSCs were more elongated than PSCs in morphology and have stronger self-renewal ability,as well as stronger chondrogenic and adipogenic differentiation potentials.This study revealed the stem cell characteristics of PCSCs distinguished from PSCs,which may indicate PCSCs and PSCs should not be treated as one type of cell to research in the future.展开更多
As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by ...As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.展开更多
The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy empl...The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy employing NH_(4)PF_6 to modify the buried interface of perovskite layer((FAPbI_(3))_(0.85)(MAPbBr_(3))_(0.15) composition) in planar PSCs.After introducing NH_(4)PF_(6),the oxygen defects on the surface of SnO_(2) film are greatly restricted due to the coordinate interaction between fluorine atoms(F) in PF_(6)^(-)and undercoordinated Sn^(4+).Meanwhile,the hydrogen bonding interaction(N-H…I) between NH_(4)PF_(6) and PbI_(2) can passivate the non-radiative charge recombination sites,significantly optimizing the quality of perovskite film,as well as the charge transfer process at the SnO_(2)/perovskite interface.As a result,the NH_(4)PF_(6)-modified PSC obtains a champion power conversion efficiency(PCE) of 21.11%superior to the reference device(18.46%),and the device with an active area of 1 cm^(2) achieves a PCE as high as17.38%.Furthermore,the unencapsulated NH_(4)PF_(6)-modified PSCs show good humidity stability and retain about80% of the initial PCE after 1080 h aging at the relative humidity(RH) of 35% ± 5%.展开更多
Perovskite solar cells(PSCs)have attracted widespread attention because of their remarkable efficiency,low cost,and ease of fabrication.However,the operational stability of the PSCs still suffers from the corrosion of...Perovskite solar cells(PSCs)have attracted widespread attention because of their remarkable efficiency,low cost,and ease of fabrication.However,the operational stability of the PSCs still suffers from the corrosion of metal electrodes induced by metal-halide reactions.Herein,we propose a feasible strategy for improving the stability of inverted PSCs by using magnetron-sputtered Mo rear electrodes.Coupled with a bismuth(Bi)buffer layer prepared by thermal evaporation,the damage from the magnetron sputtering process toward the underlayers can be effectively relieved.Consequently,based on the Bi+Mo bilayer electrode,the inverted PSCs with a NiMgLiO hole transport layer exhibited a power conversion efficiency(PCE)of 18.82%.In addition to their excellent stability at high temperatures,compact Mo films can inhibit the decomposition of Perovskite(Pvk)films in the devices.The PSCs with the Bi/Mo bilayer electrode maintained 97.9%of its initial efficiency,showing better stability than PSCs with the traditional Ag electrode after aging for 3000 h under continuous light illumination.展开更多
As a famous hole transporting material, nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiO...As a famous hole transporting material, nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiOx severely limit device performance in solar cell applications. Interfacial engineering is an efficient approach to achieve remarkable hole-transporting performance by surface passivation. Herein, the efficient NiOx hole transport layer was prepared by surface passivation engineering strategy via facile solution processes with cesium iodide (CsI). It is demonstrated that CsI plays a super-effective dual-function role in inverted solar cell device: On one hand, the presence of CsI hugely passivates the surface trap states at the NiOx/perovskite interface along with obviously improved conductivity by the incorporated Cs^(+);on the other hand, the ions immigration is significantly suppressed by the presence of I ion for high-quality perovskite films, resulting in a stable contact interface. The ameliorative interface leads to largely reduced carrier non-radiative recombination, attributing to boosted carrier extraction efficiency. As a result, decent power conversion efficiency (PCE) of 18.48% with a noticeable fill factor (FF) beyond 80% was achieved. This facile and efficient surface engineering approach with dual-function shows excellent potential for the design of high-performance functional interfacial modification layer to achieve high-performance solar cells.展开更多
Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Parti...Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Particularly,we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon.The deposition of the scaftold is entirely based on screen printing process,which provides a promising prospect for low-cost photovoltaics.However,the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films.Here,we tune the concentration of the pastes and the printing parameters for coating TiO?films,and successfully print TiO2 films with the thickness of 500-550 nm.The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes,the printing speed and pressure,and the temperature has been investigated.Besides,the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied.This work will significantly benefit the further development of printable mesoscopic PSCs.展开更多
The design and development of low-cost and efficient photovoltaic materials remain a major challenge for the research and application of polymer solar cells(PSCs).Therefore,developing efficient photovoltaic polymers w...The design and development of low-cost and efficient photovoltaic materials remain a major challenge for the research and application of polymer solar cells(PSCs).Therefore,developing efficient photovoltaic polymers with simple structure and easy preparation has become an important research topic.Here we report a facilely synthesized electron-donating polymer X1 with a simple chemical structure,which is composed of carboxylated benzo[1,2-b:4,5-b′]dithiophene(BDT)and thiophene unit.The carboxylate substituents on the BDT unit endowed the polymer with appropriate solubility,low-lying highest occupied molecular orbital(HOMO)energy level,and superior absorption.The PSCs based on X1 as the donor showed a high power conversion efficiency of 16.6%,with a remarkable short-circuit current density of 27.07 m A cm^(-2).These results demonstrated that X1 is a highly promising candidate for low-cost and efficient PSCs.Furthermore,this study revealed the potential of carboxylated BDT as an effective building block in the research and development of high-performance photovoltaic materials.展开更多
The rapid development of electronic devices such as organic field-effect transistors(OFETs)and solar cells makes the research and development of electronic transport materials imminent.The acceptor-acceptortype(Aà...The rapid development of electronic devices such as organic field-effect transistors(OFETs)and solar cells makes the research and development of electronic transport materials imminent.The acceptor-acceptortype(AàA-type)conjugated n-type polymer semiconductors have caught much attention due to the outstanding advantages on excellent electron-accepting capabilities,the precise adjustment of energy levels and the mass production at low fabrication cost.This article systematically reviews the polymerization methods of AàA-type polymers and the recent advancements applied in OFETs and polymer solar cells(PSCs).The analyses of the synthesis and the relationship between device performances and polymer molecular structures may provide a constructive guidance for the further development of highperformance n-type polymer materials.展开更多
钙钛矿太阳能电池(perovskite solar cells,PSCs)由于光电转换效率高、制备工艺简单、成本低等优势受到广泛关注,电池效率已从3.8%提升到25.7%。目前,对基于SnO_(2)电子传输层的n-i-p型平板结构电池的研究越来越多,但存在着工艺可重复...钙钛矿太阳能电池(perovskite solar cells,PSCs)由于光电转换效率高、制备工艺简单、成本低等优势受到广泛关注,电池效率已从3.8%提升到25.7%。目前,对基于SnO_(2)电子传输层的n-i-p型平板结构电池的研究越来越多,但存在着工艺可重复性差、效率低等问题。针对n-i-p型平板结构PSCs的制备进行了系统的研究,包括导电基底的选择、钙钛矿制备工艺参数的优化以及电池存储环境。结果证明,上述参数对于电池均具有重要影响,并结合扫描电子显微镜、X射线衍射、吸收光谱分析了原因。在最优工艺条件下(掺锡氧化铟基底,PbI_(2)退火温度70℃(1 min),胺盐溶液滴加后静置时间不超过5 s,存储湿度4.5%),器件平均效率达到21.85%,最高效率达到23.47%,迟滞可忽略,具有良好的可重复性。研究结果可为制备重复性好、光电转换效率高的PSCs提供科学支撑。展开更多
A solution-processed zinc oxide (ZnO) thin film as the buffer layer with optimized processes especially the annealing conditions for inverted polymer solar cells (PSCs) has been demonstrated. Firstly the thickness of ...A solution-processed zinc oxide (ZnO) thin film as the buffer layer with optimized processes especially the annealing conditions for inverted polymer solar cells (PSCs) has been demonstrated. Firstly the thickness of ZnO buffer layer was optimized, and different annealing conditions including temperature and time have also been taken into consideration. And the best Power Conversion Efficiency (PCE) 3.434% was observed when the ZnO buffer layer was spin–coated at 1500 rpm and annealed at 275℃ for 5 min, and AFM results showed that morphology of this ZnO film has the best uniformity which was beneficial to form high quality polymer composite active layer.展开更多
Inverted perovskite solar cells using pristine PEDOT:PSS as the hole-transporting layer (HTL) have been widely studied for its less hysteresis and low-temperature preparation technologies. However, this device suffers...Inverted perovskite solar cells using pristine PEDOT:PSS as the hole-transporting layer (HTL) have been widely studied for its less hysteresis and low-temperature preparation technologies. However, this device suffers from an inferior open-circuit voltage (VOC) and stability problems. Several attempts have made on film formation and interface engineering to improve the efficiency. Modification proved beneficial to decrease energy offset at the interface between the HTL layer and the adjacent perovskite layer. In this paper, modification PEDOT:PSS layers were realized with a dimethyl formamide (DMF) solvent. The sulfonic acid distribution was homogenized in the normal directi on after modification. The work function of the modified PEDOT:PSS layers increased from 4.71 to 5.07eV, and the conductivity of modified PEDOT:PSS increased from 3×10^-4 to 0.45 S/cm. The as-deposited perovskite films were more uniform with larger grain sizes and less pinholes, resulting in an improved VOC from 0.93 to 1.048 V, while the efficiency was increased from 11.5% to 16.8%. Solar cells without encapsulation under the 50 h and 50% humidity aging test showed 7% degradation of fill factor (FF) with 50 v/v% PEDOT:PSS layer, while the fill factor decreased 11.2% in the 0 v/v% PEDOT:PSS layer, respectively.展开更多
为解决钙钛矿太阳能电池(perovskite solar cells,PSCs)中采用贵金属作为对电极(counter electrode,CE)而导致的成本高昂问题,对碳纳米管(CNTs)进行磺酸化处理,并将磺酸化CNTs(s-CNTs)作为对电极材料应用到PSCs中.利用稳态荧光(PL)、电...为解决钙钛矿太阳能电池(perovskite solar cells,PSCs)中采用贵金属作为对电极(counter electrode,CE)而导致的成本高昂问题,对碳纳米管(CNTs)进行磺酸化处理,并将磺酸化CNTs(s-CNTs)作为对电极材料应用到PSCs中.利用稳态荧光(PL)、电化学阻抗(EI)等方法对PSCs的电荷传输过程进行研究,结果如下:与CNTs对电极相比,s-CNTs对电极具有更好的导电性、更优异的空穴提取和传输能力,在s-CNTs基PSC上获得6.18%的能量转换效率.当喷涂量为1 mL/块,退火温度为100℃,退火时间为30 min时,s-CNTs基PSC的各项性能最优,并具有较好的重复性.研究结果为改善碳基PSCs的光电性能提供了新思路.展开更多
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 51675210 and 51675209)the China Postdoctoral Science Foundation (Grant No. 2016M602283)
文摘Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.
基金This research was funded by the National Natural Science Foundation of China,grants number 11972068 and 12002026funded by the China Space Station Engineering Experiment Project,grants number HYZHXM01016.
文摘Bone marrow mesenchymal stem cells(BMSCs),periosteal stem cells(PSCs),and other bone stem cells originate from embryonic bone formation,but their function and stem cell characteristics such as proliferation ability and differentiation ability change at different anatomical locations.Perichondral-derived stem cells(PCSCs)are more closely related to PSCs in origin and function,usually used to be studied together with PSCs as one type of stem cell.However,this leads to the ignoration of the PCSCs'characteristics.Since the anatomical locations of these two types of stem cells diverse,PCSCs should have some differences from PSCs.In this study,the PCSCs in the perichondrium surrounding the growth plate cartilage expressed CTSK and CD200 same as PSCs.However,when compared the stem cell characteristics of PCSCs with that of PSCs,PCSCs were more elongated than PSCs in morphology and have stronger self-renewal ability,as well as stronger chondrogenic and adipogenic differentiation potentials.This study revealed the stem cell characteristics of PCSCs distinguished from PSCs,which may indicate PCSCs and PSCs should not be treated as one type of cell to research in the future.
基金the National Natural Science Foundation of China(No.51773046)the Fundamental Research Funds for the Central Universities,the School of Materials Science and Engineering,Shaanxi Normal Universitythe Project of Key Laboratory of Organic Synthesis of Jiangsu Province,College of Chemistry Chemical Engineering and Materials Science,Soochow University。
文摘As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.
基金financially supported by the National Natural Science Foundation of China (Nos. 22179053, 22279046 and 21905119)the Natural Science Excellent Youth Foundation of Jiangsu Provincial (No. BK20220112)the Six-Peak Top Talents in Jiangsu province (No. XNY066)。
文摘The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy employing NH_(4)PF_6 to modify the buried interface of perovskite layer((FAPbI_(3))_(0.85)(MAPbBr_(3))_(0.15) composition) in planar PSCs.After introducing NH_(4)PF_(6),the oxygen defects on the surface of SnO_(2) film are greatly restricted due to the coordinate interaction between fluorine atoms(F) in PF_(6)^(-)and undercoordinated Sn^(4+).Meanwhile,the hydrogen bonding interaction(N-H…I) between NH_(4)PF_(6) and PbI_(2) can passivate the non-radiative charge recombination sites,significantly optimizing the quality of perovskite film,as well as the charge transfer process at the SnO_(2)/perovskite interface.As a result,the NH_(4)PF_(6)-modified PSC obtains a champion power conversion efficiency(PCE) of 21.11%superior to the reference device(18.46%),and the device with an active area of 1 cm^(2) achieves a PCE as high as17.38%.Furthermore,the unencapsulated NH_(4)PF_(6)-modified PSCs show good humidity stability and retain about80% of the initial PCE after 1080 h aging at the relative humidity(RH) of 35% ± 5%.
基金financially supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China (No.2021YFB3800104)the National Natural Science Foundation of China (Nos.52002140,U20A20252,62205187 and 21C-OP-202206)+4 种基金the Young Elite Scientists Sponsorship Program by CASTthe Selfdetermined and Innovative Research Funds of HUST (No.2020kfy XJJS008)the Natural Science Foundation of Hubei Province (No.2022CFA093)the Fundamental Research Program of Shanxi Province (No.202103021223032)the Innovation Project of Optics Valley Laboratory (No.OVL2021BG008)。
文摘Perovskite solar cells(PSCs)have attracted widespread attention because of their remarkable efficiency,low cost,and ease of fabrication.However,the operational stability of the PSCs still suffers from the corrosion of metal electrodes induced by metal-halide reactions.Herein,we propose a feasible strategy for improving the stability of inverted PSCs by using magnetron-sputtered Mo rear electrodes.Coupled with a bismuth(Bi)buffer layer prepared by thermal evaporation,the damage from the magnetron sputtering process toward the underlayers can be effectively relieved.Consequently,based on the Bi+Mo bilayer electrode,the inverted PSCs with a NiMgLiO hole transport layer exhibited a power conversion efficiency(PCE)of 18.82%.In addition to their excellent stability at high temperatures,compact Mo films can inhibit the decomposition of Perovskite(Pvk)films in the devices.The PSCs with the Bi/Mo bilayer electrode maintained 97.9%of its initial efficiency,showing better stability than PSCs with the traditional Ag electrode after aging for 3000 h under continuous light illumination.
基金This research was supported by the Sichuan Science and Technology Program(No.2021YFH0090)Scientific Research Start-Up Project of Southwest Petroleum University,China(No.X151528)The authors are grateful to the colleagues for their assistance.
文摘As a famous hole transporting material, nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiOx severely limit device performance in solar cell applications. Interfacial engineering is an efficient approach to achieve remarkable hole-transporting performance by surface passivation. Herein, the efficient NiOx hole transport layer was prepared by surface passivation engineering strategy via facile solution processes with cesium iodide (CsI). It is demonstrated that CsI plays a super-effective dual-function role in inverted solar cell device: On one hand, the presence of CsI hugely passivates the surface trap states at the NiOx/perovskite interface along with obviously improved conductivity by the incorporated Cs^(+);on the other hand, the ions immigration is significantly suppressed by the presence of I ion for high-quality perovskite films, resulting in a stable contact interface. The ameliorative interface leads to largely reduced carrier non-radiative recombination, attributing to boosted carrier extraction efficiency. As a result, decent power conversion efficiency (PCE) of 18.48% with a noticeable fill factor (FF) beyond 80% was achieved. This facile and efficient surface engineering approach with dual-function shows excellent potential for the design of high-performance functional interfacial modification layer to achieve high-performance solar cells.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.21702069,91433203 and 61474049)the Ministry of Science and Technology of China(863)(No.2015AA034601)+3 种基金the Fundamental Research Funds for the Central Universities,the Science and Technology Department ofHubei Province(No.2017AAA190)the 111 Project(No.B07038)the China Postdoctoral Science Foundation(No.2017M612452)and the Double first-class research funding of China-EU Institute for Clean and Renewable Energy(Nos.ICARE-RP-2018-SOLAR-001 and ICARE-RP-2018-SOLAR-002).
文摘Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Particularly,we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon.The deposition of the scaftold is entirely based on screen printing process,which provides a promising prospect for low-cost photovoltaics.However,the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films.Here,we tune the concentration of the pastes and the printing parameters for coating TiO?films,and successfully print TiO2 films with the thickness of 500-550 nm.The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes,the printing speed and pressure,and the temperature has been investigated.Besides,the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied.This work will significantly benefit the further development of printable mesoscopic PSCs.
基金supported by the National Natural Science Foundation of China(51773046)the Fundamental Research Funds for the Central Universitiesthe School of Materials Science and Engineering,Shaanxi Normal University。
文摘The design and development of low-cost and efficient photovoltaic materials remain a major challenge for the research and application of polymer solar cells(PSCs).Therefore,developing efficient photovoltaic polymers with simple structure and easy preparation has become an important research topic.Here we report a facilely synthesized electron-donating polymer X1 with a simple chemical structure,which is composed of carboxylated benzo[1,2-b:4,5-b′]dithiophene(BDT)and thiophene unit.The carboxylate substituents on the BDT unit endowed the polymer with appropriate solubility,low-lying highest occupied molecular orbital(HOMO)energy level,and superior absorption.The PSCs based on X1 as the donor showed a high power conversion efficiency of 16.6%,with a remarkable short-circuit current density of 27.07 m A cm^(-2).These results demonstrated that X1 is a highly promising candidate for low-cost and efficient PSCs.Furthermore,this study revealed the potential of carboxylated BDT as an effective building block in the research and development of high-performance photovoltaic materials.
基金the financial support from the Natural Science Foundation of Beijing Municipality(2192059)the National Natural Science Foundation of China(21673059,21774130 and 51925306)+4 种基金the National Key R&D Program of China(2018FYA0305800)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC046)the Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)the International Partnership Program of Chinese Academy of Sciences(211211KYSB20170014)。
文摘The rapid development of electronic devices such as organic field-effect transistors(OFETs)and solar cells makes the research and development of electronic transport materials imminent.The acceptor-acceptortype(AàA-type)conjugated n-type polymer semiconductors have caught much attention due to the outstanding advantages on excellent electron-accepting capabilities,the precise adjustment of energy levels and the mass production at low fabrication cost.This article systematically reviews the polymerization methods of AàA-type polymers and the recent advancements applied in OFETs and polymer solar cells(PSCs).The analyses of the synthesis and the relationship between device performances and polymer molecular structures may provide a constructive guidance for the further development of highperformance n-type polymer materials.
文摘钙钛矿太阳能电池(perovskite solar cells,PSCs)由于光电转换效率高、制备工艺简单、成本低等优势受到广泛关注,电池效率已从3.8%提升到25.7%。目前,对基于SnO_(2)电子传输层的n-i-p型平板结构电池的研究越来越多,但存在着工艺可重复性差、效率低等问题。针对n-i-p型平板结构PSCs的制备进行了系统的研究,包括导电基底的选择、钙钛矿制备工艺参数的优化以及电池存储环境。结果证明,上述参数对于电池均具有重要影响,并结合扫描电子显微镜、X射线衍射、吸收光谱分析了原因。在最优工艺条件下(掺锡氧化铟基底,PbI_(2)退火温度70℃(1 min),胺盐溶液滴加后静置时间不超过5 s,存储湿度4.5%),器件平均效率达到21.85%,最高效率达到23.47%,迟滞可忽略,具有良好的可重复性。研究结果可为制备重复性好、光电转换效率高的PSCs提供科学支撑。
文摘A solution-processed zinc oxide (ZnO) thin film as the buffer layer with optimized processes especially the annealing conditions for inverted polymer solar cells (PSCs) has been demonstrated. Firstly the thickness of ZnO buffer layer was optimized, and different annealing conditions including temperature and time have also been taken into consideration. And the best Power Conversion Efficiency (PCE) 3.434% was observed when the ZnO buffer layer was spin–coated at 1500 rpm and annealed at 275℃ for 5 min, and AFM results showed that morphology of this ZnO film has the best uniformity which was beneficial to form high quality polymer composite active layer.
基金funded by the National Natural Science Foundation of China(No.51672111)Advanced Talents Program of Hebei Province(No.GCC2014013)+1 种基金Top Young Outstanding Innovative Talents Program of Hebei Province(No.BJ2014009)the Natural Science Foundation of Hebei Probince(No.F2015201189)
文摘Inverted perovskite solar cells using pristine PEDOT:PSS as the hole-transporting layer (HTL) have been widely studied for its less hysteresis and low-temperature preparation technologies. However, this device suffers from an inferior open-circuit voltage (VOC) and stability problems. Several attempts have made on film formation and interface engineering to improve the efficiency. Modification proved beneficial to decrease energy offset at the interface between the HTL layer and the adjacent perovskite layer. In this paper, modification PEDOT:PSS layers were realized with a dimethyl formamide (DMF) solvent. The sulfonic acid distribution was homogenized in the normal directi on after modification. The work function of the modified PEDOT:PSS layers increased from 4.71 to 5.07eV, and the conductivity of modified PEDOT:PSS increased from 3×10^-4 to 0.45 S/cm. The as-deposited perovskite films were more uniform with larger grain sizes and less pinholes, resulting in an improved VOC from 0.93 to 1.048 V, while the efficiency was increased from 11.5% to 16.8%. Solar cells without encapsulation under the 50 h and 50% humidity aging test showed 7% degradation of fill factor (FF) with 50 v/v% PEDOT:PSS layer, while the fill factor decreased 11.2% in the 0 v/v% PEDOT:PSS layer, respectively.