期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
K-doped BaCo_(0.4)Fe_(0.4)Zr_(0.2)O_(3−δ) as a promising cathode material for protonic ceramic fuel cells 被引量:4
1
作者 Peng QIU Bo LIU +4 位作者 Lei WU Huiying QI Baofeng TU Jian LI Lichao JIA 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第12期1988-2000,共13页
Slow oxygen reduction reaction(ORR)involving proton transport remains the limiting factor for electrochemical performance of proton-conducting cathodes.To further reduce the operating temperature of protonic ceramic f... Slow oxygen reduction reaction(ORR)involving proton transport remains the limiting factor for electrochemical performance of proton-conducting cathodes.To further reduce the operating temperature of protonic ceramic fuel cells(PCFCs),developing triple-conducting cathodes with excellent electrochemical performance is required.In this study,K-doped BaCo_(0.4)Fe_(0.4)Zr_(0.2)O_(3−δ)(BCFZ442)series were developed and used as the cathodes of the PCFCs,and their crystal structure,conductivity,hydration capability,and electrochemical performance were characterized in detail.Among them,Ba_(0.9)K_(0.1)Co_(0.4)Fe_(0.4)Zr_(0.2)O_(3−δ)(K10)cathode has the best electrochemical performance,which can be attributed to its high electron(e^(−))/oxygen ion(O^(2−))/H^(+)conductivity and proton uptake capacity.At 750℃,the polarization resistance of the K10 cathode is only 0.009Ω·cm^(2),the peak power density(PPD)of the single cell with the K10 cathode is close to 1 W·cm^(−2),and there is no significant degradation within 150 h.Excellent electrochemical performance and durability make K10 a promising cathode material for the PCFCs.This work can provide a guidance for further improving the proton transport capability of the triple-conducting oxides,which is of great significance for developing the PCFC cathodes with excellent electrochemical performance. 展开更多
关键词 proton transport proton-conducting cathode protonic ceramic fuel cells(pcfcs) triple-conducting hydration capability
原文传递
High-temperature transport properties of BaSn_(1−x)Sc_(x)O_(3−δ) ceramic materials as promising electrolytes for protonic ceramic fuel cells 被引量:3
2
作者 Inna A.ZVONAREVA AlexeyМ.MINEEV +2 位作者 Natalia A.TARASOVA Xian-Zhu FU Dmitry A.MEDVEDEV 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第7期1131-1143,共13页
Protonic ceramic fuel cells(PCFCs)offer a convenient means for electrochemical conversion of chemical energy into electricity at intermediate temperatures with very high efficiency.Although BaCeO_(3)-and BaZrO_(3)-bas... Protonic ceramic fuel cells(PCFCs)offer a convenient means for electrochemical conversion of chemical energy into electricity at intermediate temperatures with very high efficiency.Although BaCeO_(3)-and BaZrO_(3)-based complex oxides have been positioned as the most promising PCFC electrolytes,the design of new protonic conductors with improved properties is of paramount importance.Within the present work,we studied transport properties of scandium-doped barium stannate(Sc-doped BaSnO_(3)).Our analysis included the fabrication of porous and dense BaSn_(1−x)Sc_(x)O_(3−δ)ceramic materials(0≤x≤0.37),as well as a comprehensive analysis of their total,ionic,and electronic conductivities across all the experimental conditions realized under the PCFC operation:both air and hydrogen atmospheres with various water vapor partial pressures(p(H2O)),and a temperature range of 500–900℃.This work reports on electrolyte domain boundaries of the undoped and doped BaSnO_(3)for the first time,revealing that pure BaSnO_(3)exhibits mixed ionic–electronic conduction behavior under both oxidizing and reducing conditions,while the Sc-doping results in the gradual improvement of ionic(including protonic)conductivity,extending the electrolyte domain boundaries towards reduced atmospheres.This latter property makes the heavilydoped BaSnO_(3)representatives attractive for PCFC applications. 展开更多
关键词 BaSnO_(3) protonic ceramic fuel cells(pcfcs) proton transport PEROVSKITE HYDRATION electronic conductivity
原文传递
New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells 被引量:4
3
作者 Yihan LING Tianming GUO +5 位作者 Yangyang GUO Yang YANG Yunfeng TIAN Xinxin WANG Xuemei OU Peizhong FENG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期1052-1060,共9页
New two-layer Ruddlesden-Popper(RP)oxide La_(0.25)Sr_(2.75)FeNiO_(7-δ)(LSFN)in the combination of Sr_(3)Fe_(2)O_(7-δ) and La_(3)Ni_(2)O_(7-δ) was successfully synthesized and studied as the potential active single-... New two-layer Ruddlesden-Popper(RP)oxide La_(0.25)Sr_(2.75)FeNiO_(7-δ)(LSFN)in the combination of Sr_(3)Fe_(2)O_(7-δ) and La_(3)Ni_(2)O_(7-δ) was successfully synthesized and studied as the potential active single-phase and composite cathode for protonic ceramics fuel cells(PCFCs).LSFN with the tetragonal symmetrical structure(IMmmm)is confinned,and the co-existence of Fe^(3+)/Fe^(4+) and Ni^(3+)/Ni^(2+) couples is demonstrated by X-ray photoelectron spectrometer(XPS)analysis.The LSFN conductivity is apparently enhanced after Ni doping in Fe-site,and nearly three times those of Sr_(3)Fe_(2)O_(7-δ),which is directly related to the carrier concentration and conductor mechanism.Importantly,anode supported PCFCs using LSFN-BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)(LSFN-BZCY)composite cathode achieved high power density(426 mW·cm^(-2) at 650℃)and low electrode interface polarization resistance(0.26Ω·cm^(2)).Besides,distribution of relaxation time(DRT)function technology was further used to analyse the electrode polarization processes.The observed three peaks(Pl,P2,and P3)separated by DRT shifted to the high frequency region with the decreasing temperature,suggesting that the charge transfer at the electrode-electrolyte interfaces becomes more difficult at reduced temperatures.Preliminary results demonstrate that new two-layer RP phase LSFN can be a promising cathode candidate for PCFCs. 展开更多
关键词 protonic ceramics fuel cells(pcfcs) Ruddlesden-Popper(RP)phase single-phase cathode distribution of relaxation time(DRT)function charge transfer
原文传递
Electrolyte materials for protonic ceramic electrochemical cells:Main limitations and potential solutions 被引量:1
4
作者 Anna V.Kasyanova Inna A.Zvonareva +3 位作者 Natalia A.Tarasova Lei Bi Dmitry A.Medvedev Zongping Shao 《Materials Reports(Energy)》 2022年第4期19-35,共17页
Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As... Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As compared with oxygen-conducting cells,the operational temperatures of protonic ceramic fuel cells(PCFCs)and electrolysis cells(PCECs)can be reduced by several hundreds of degrees(down to low-and intermediatetemperature ranges of 400–700C)while maintaining high performance and efficiency.This is due to the distinctive characteristics of charge carriers for proton-conducting electrolytes.However,despite achieving outstanding lab-scale performance,the prospects for industrial scaling of PCFCs and PCECs remain hazy,at least in the near future,in contrast to commercially available SOFCs and SOECs.In this review,we reveal the reasons for the delayed technological development,which need to be addressed in order to transfer fundamental findings into industrial processes.Possible solutions to the identified problems are also highlighted. 展开更多
关键词 Protonic ceramic fuel cells(pcfcs) Protonic ceramic electrolysis cells(PCECs) Proton transport ELECTROCHEMISTRY Hydrogen energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部