The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report...The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C.展开更多
基金supported by the National Basic Research Program of China(973 Program,2015CB932304)the National Natural Science Founda-tion of China(21436003)
文摘The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C.