Lithium(Li)metal batteries(LMBs)can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth,unstable interfaces,and highly abundant excess Li(>50 mAh·...Lithium(Li)metal batteries(LMBs)can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth,unstable interfaces,and highly abundant excess Li(>50 mAh·cm^(-2)).Herein,different from the artificial layer or three-dimensional(3D)matrix host constructions,various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution.As a proof of concept,a 3D interwoven high dielectric functional polymer(HDFP)nanofiber network with polar C-F dipole moments electrospun on copper(Cu)foil is designed,realizing uniform and controllable Li deposition capacity up to 5.0 mAh·cm^(-2),thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA·cm^(-2).More importantly,under the highcathode loading(~3.1 mAh·cm^(-2))and only 0.6×excess Li(N/P ratio of 1.6),the full cells retain capacity retention of 97.4%after 200 cycles at 3.36 mA·cm^(-2)and achieve high energy density(297.7 Wh·kg^(-1)at cell-level)under lean electrolyte conditions(15μL),much better than ever-reported literatures.Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries.展开更多
Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isol...Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isolates obtained from the biofilms of wastewater treatment systems and of little carpolite in soil. Among these isolates, seven showed strong biofilm-forming capacity. The phylogenetic affiliation of the isolates showing high biofilm formation capacity was determined through 16S rDNA sequencing and the isolates were grouped into 7 bacterial species including Pseudornonas sp., Pseudomonas putida, Aeromonas caviae, Bacillus cereus, Pseudornonas plecoglossicida, Aeromonas hydrophila, and Comamonas testosteroni. The biofilm-forming capacity was closely related with flagella, exopolysaccharide, and extracellular protein. According to the coefficient of determination, the relative importance of the five biological characteristics to biofilm formation was, in order from greatest to least, exopolysaccharide 〉 flagella 〉 N-acyl-homoserine lactones (AHLs) signaling molecules 〉 extracellular protein 〉 swarming motility.展开更多
基金This work was financial supported by the National Natural Science Foundation of China(Nos.51877132,52003153,and 22005186)the Program of Shanghai Academic Research Leader(No.21XD1401600).
文摘Lithium(Li)metal batteries(LMBs)can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth,unstable interfaces,and highly abundant excess Li(>50 mAh·cm^(-2)).Herein,different from the artificial layer or three-dimensional(3D)matrix host constructions,various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution.As a proof of concept,a 3D interwoven high dielectric functional polymer(HDFP)nanofiber network with polar C-F dipole moments electrospun on copper(Cu)foil is designed,realizing uniform and controllable Li deposition capacity up to 5.0 mAh·cm^(-2),thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA·cm^(-2).More importantly,under the highcathode loading(~3.1 mAh·cm^(-2))and only 0.6×excess Li(N/P ratio of 1.6),the full cells retain capacity retention of 97.4%after 200 cycles at 3.36 mA·cm^(-2)and achieve high energy density(297.7 Wh·kg^(-1)at cell-level)under lean electrolyte conditions(15μL),much better than ever-reported literatures.Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries.
基金supported by the National Natural Science Foundation of China (No.30600016)the Environment Protection Department of Jiangsu Province,China (No.2004007)
文摘Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isolates obtained from the biofilms of wastewater treatment systems and of little carpolite in soil. Among these isolates, seven showed strong biofilm-forming capacity. The phylogenetic affiliation of the isolates showing high biofilm formation capacity was determined through 16S rDNA sequencing and the isolates were grouped into 7 bacterial species including Pseudornonas sp., Pseudomonas putida, Aeromonas caviae, Bacillus cereus, Pseudornonas plecoglossicida, Aeromonas hydrophila, and Comamonas testosteroni. The biofilm-forming capacity was closely related with flagella, exopolysaccharide, and extracellular protein. According to the coefficient of determination, the relative importance of the five biological characteristics to biofilm formation was, in order from greatest to least, exopolysaccharide 〉 flagella 〉 N-acyl-homoserine lactones (AHLs) signaling molecules 〉 extracellular protein 〉 swarming motility.