Ginsenoside Rgl is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether ne...Ginsenoside Rgl is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 ~tM ginsenoside Rgl. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rgl had the greatest differentiation-inducing effect and was the concentration used for subsequent exper- iments. Whole-cell patch clamp showed that neural stem cells induced by 20 jaM ginsenoside Rgl were more mature than non-induced cells. We then established neonatal rat models of hypox- ic-ischemic encephalopathy using the suture method, and ginsenoside Rgl-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rgl-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.展开更多
Lithium-ion batteries have emerged as the best portable energy storage device for the consumer electronics market. Recent progress in the development of lithium- ion batteries has been achieved by the use of selected ...Lithium-ion batteries have emerged as the best portable energy storage device for the consumer electronics market. Recent progress in the development of lithium- ion batteries has been achieved by the use of selected anode materials, which have driven improvements in performance in terms of capadty, cyclic stability, and rate capability. In this regard, research focusing on the design and electrochemical performance of full cell lithium-ion batteries, utilizing newly developed anode materials, has been widely reported, and great strides in development have been made. Nanostructured anode materials have contributed largely to the development of full cell lithium-ion batteries. With this in mind, we summarize the impact of nanostructured anode materials in the performance of coin cell full lithium-ion batteries. This review also discusses the challenges and prospects of research into full cell lithium-ion batteries.展开更多
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these...In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.展开更多
Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-ceUs because of their differentiation capacity. In this study, we have developed a ...Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-ceUs because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently dif- ferentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-l-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained en- dogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-ceUs under xeno-free conditions and highlight their poten- tial to treat patients with type I diabetes.展开更多
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSC...This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation, hUCMSCs were co-cultured with normal or AI31.4o-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural ceils.展开更多
Objective: Recent evidence suggests that Oct-4 is highly expressed in several cancers, and its expression contributes to tumor growth. In this study, we investigated the level of Oct-4 expression in rectal adenocarci...Objective: Recent evidence suggests that Oct-4 is highly expressed in several cancers, and its expression contributes to tumor growth. In this study, we investigated the level of Oct-4 expression in rectal adenocarcinoma, and evaluated the prognostic significance of Oct-4 expression in these cases. Methods: The immunohistochemical expression of Oct-4 was evaluated in 52 formalin-fixed paraffin-embedded postoperative rectal adenocarcinoma tissue samples. The impact of the immunoreactivity of Oct-4 in regard to clinical outcome was determined by Kaplan-Meier and log-rank. Results: The expression level of Oct-4 ranged from 0 to 18.5%. There was no significant association between Oct-4 expression and gender (P=0.772), age (P=0.123), clinical stage (P=0.391), and histological grade (P=0.056). The 3-year local recurrence-free rates with negative and positive expression of Oct-4 were 83.5% and 75.0%, respectively (P=0.583). The 3-year metastasis-free rates with negative and positive expression of Oct-4 were 88.6% and 61.9%, respectively (P=0.035). The 3-year overall survival rates with negative and positive expression of Oct-4 were 77.9% and 49.0%, respectively (P=0.037). Conclusion: The results suggest that embryonic stem cell marker Oct-4 expression may have prognostic significance in patients with rectal adenocarcinoma. However, to confirm this more and larger studies are required.展开更多
The incorporation of xyloglucan oligosaccharide (XXXG) into the walls of suspension-cultured tobacco cells accelerated cell expansion followed by cell division, changed cell shape from cylindrical to spherical, decr...The incorporation of xyloglucan oligosaccharide (XXXG) into the walls of suspension-cultured tobacco cells accelerated cell expansion followed by cell division, changed cell shape from cylindrical to spherical, decreased cell size, and caused cell aggregation. Fluorescent XXXG added to the culture medium was found to be incorporated into the surface of the entire wall, where strong incorporation occurred not only on the surface, but also in the interface walls between cells during cell division. Cell expansion was always greater in the transverse direction than in the longitudinal direction and then, immediately, expansion led to cell division in the presence of XXXG; this process might result in the high level of cell aggregation seen in cultured tobacco cells. We concluded that the integration of this oligosaccharide into the walls could accelerate not only cell expansion, but also cell division in cultured cells.展开更多
To investigate the action mechanisms of a new erythrocyte-derived depressing factor(EDDF), the focus is placed on the effect of EDDF on both cytosolic and nuclear free calcium (Ca2+) transportation in vascular smooth ...To investigate the action mechanisms of a new erythrocyte-derived depressing factor(EDDF), the focus is placed on the effect of EDDF on both cytosolic and nuclear free calcium (Ca2+) transportation in vascular smooth muscle cell (VSMC), as well as the apoptosis and cell cycle of VSMC of rats. EDDF has been extracted from human erythrocytes. The changes of Ca2+ levels in cytoplasm ([Ca2+],) and nucleus ([Ca2+]n) have been observed using a laser scanning confocal microscope together with fluo-3/AM as a calcium indicator. Flow cytometric technique was used to study the effect of EDDF on cell cycle and apoptosis of VSMC. [Ca2+]j and [Ca2+]n were significantly decreased through several different pathways: ( i) it reduced the Ca2+ influx by blocking L-type voltage-dependent calcium channel (L-VDC) and R-type voltage-dependent calcium channel (R-VDC); (ii) it inhibited the Ca2+ release from inositol 1, 4, 5-trisphosphate (IP3) sensitive calcium store; and (iii) activated Ca2+-ATPase of sarcoplasmic reticulum (展开更多
Tumor metastasis represents the main causes of cancer-related death.Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis,but the underlying mechanis...Tumor metastasis represents the main causes of cancer-related death.Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis,but the underlying mechanisms remain less clear.Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation.CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation.ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation.The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses.Importantly,dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion,as overexpression of the persistent acetylation-mimicking or nonacetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion.Mechanistically,the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6-ACAP4 complex with plasma membrane in response to CCL18 stimulation.Thus,these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.展开更多
An electrical cancer biosensor was developed using amine-functionalized vertically aligned carbon nanotubes (VACNTs) conjugated to folic acid (FA) molecules. Specific binding of FA to folate receptor (FR) existi...An electrical cancer biosensor was developed using amine-functionalized vertically aligned carbon nanotubes (VACNTs) conjugated to folic acid (FA) molecules. Specific binding of FA to folate receptor (FR) existing on the membrane of cancer cells assisted their entrapment on VACNTs. For the conjugation of FA to CNTs, amine (--NH2) functional groups were attached to the side walls of the nanotubes by plasma treatment. The amount and shape of entrapped cancer cells on FA-VACNTs were noticeably higher and more uniform than the cells entrapped on bare VACNTs. The comparative signal spike of the FA-VACNTs and VACNTs covered impedance sensor in interaction with the same concentration of lung cancer cells (QUDB) showed sharper response for the functionalized sensor. Moreover, electron microscopy and florescent images as well as impedance diagrams verified the spherical and non-deformed shape of the cells entrapped by FA-VACNT, This sensor would be useful in assaying the cells vitality in time evolution. This device could be applied in diagnostic and time monitoring applications in the field of cancer such as extreme drug resistance assay (EDR).展开更多
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo...A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.展开更多
BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccha...BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill grou展开更多
The anti-cancer effect of PSP purified products, PSP-A, PSP-B, PSP-C and crude product PSP-Cr was compared on four human tumor cell lines in vitro. It was found that the inhibition rate of cell proliferation of PSP-A ...The anti-cancer effect of PSP purified products, PSP-A, PSP-B, PSP-C and crude product PSP-Cr was compared on four human tumor cell lines in vitro. It was found that the inhibition rate of cell proliferation of PSP-A was higher than that of PSP-Cr (P<0. 05). On SPC cells, the inhibition rate of PSP-A at a dosage of 1000μg/ml was 62. 7%, being the highest as compared with those on the other three cell lines. Morphological changes were seen in all the four cell lines, especially in SPC cells after PSP-A treatment.展开更多
To study the expression of mTR gene in the testis of SD rats with varied ages and its significance, in situ hybridization (ISH) techniques were applied to detect the expression of telomerase gene mTR mRNA in the testi...To study the expression of mTR gene in the testis of SD rats with varied ages and its significance, in situ hybridization (ISH) techniques were applied to detect the expression of telomerase gene mTR mRNA in the testis of SD rats. The expression of mTR was found in testes of different-age male SD rats. There was a positive correlation between the expression of mTR and the location of germ cells (spermatogonia, spermatocyte, spermatid). In Setoli cells, leydig cell and spermatozoa, no telomerase mTR was detectable. Type A spermatogonia expressed the highest level of telomerase mTR mRNA. It was suggested that the expression of mTR gene in the testis of SD rats is of lifetime and coincides with the telomerase activity.展开更多
基金supported by the Natural Science Foundation of Chongqing in China,No.CSTC2011jj A0013
文摘Ginsenoside Rgl is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 ~tM ginsenoside Rgl. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rgl had the greatest differentiation-inducing effect and was the concentration used for subsequent exper- iments. Whole-cell patch clamp showed that neural stem cells induced by 20 jaM ginsenoside Rgl were more mature than non-induced cells. We then established neonatal rat models of hypox- ic-ischemic encephalopathy using the suture method, and ginsenoside Rgl-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rgl-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21273290 and 21476271), the Natural Science Foundation of Guangdong Province (Nos. S2013030013474 and 2014KTSCX004) and the Science and Technology Plan Project of Guangdong Province (Nos. 2014B101123002, 2014B050505001 and 2015B010118002). We thank the Middle School Student Talent Plan.
文摘Lithium-ion batteries have emerged as the best portable energy storage device for the consumer electronics market. Recent progress in the development of lithium- ion batteries has been achieved by the use of selected anode materials, which have driven improvements in performance in terms of capadty, cyclic stability, and rate capability. In this regard, research focusing on the design and electrochemical performance of full cell lithium-ion batteries, utilizing newly developed anode materials, has been widely reported, and great strides in development have been made. Nanostructured anode materials have contributed largely to the development of full cell lithium-ion batteries. With this in mind, we summarize the impact of nanostructured anode materials in the performance of coin cell full lithium-ion batteries. This review also discusses the challenges and prospects of research into full cell lithium-ion batteries.
基金F.H. was supported by grants from the China Scholarship Councilthe Research Council for Chemical Sciences (700.58.301 to R.O.) with fnancial aid from The Netherlands Organization for Scientifc Research
文摘In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
文摘Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-ceUs because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently dif- ferentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-l-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained en- dogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-ceUs under xeno-free conditions and highlight their poten- tial to treat patients with type I diabetes.
文摘This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation, hUCMSCs were co-cultured with normal or AI31.4o-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural ceils.
基金supported by the grant from Jiangsu Natural Science Program(No.BK2009126).
文摘Objective: Recent evidence suggests that Oct-4 is highly expressed in several cancers, and its expression contributes to tumor growth. In this study, we investigated the level of Oct-4 expression in rectal adenocarcinoma, and evaluated the prognostic significance of Oct-4 expression in these cases. Methods: The immunohistochemical expression of Oct-4 was evaluated in 52 formalin-fixed paraffin-embedded postoperative rectal adenocarcinoma tissue samples. The impact of the immunoreactivity of Oct-4 in regard to clinical outcome was determined by Kaplan-Meier and log-rank. Results: The expression level of Oct-4 ranged from 0 to 18.5%. There was no significant association between Oct-4 expression and gender (P=0.772), age (P=0.123), clinical stage (P=0.391), and histological grade (P=0.056). The 3-year local recurrence-free rates with negative and positive expression of Oct-4 were 83.5% and 75.0%, respectively (P=0.583). The 3-year metastasis-free rates with negative and positive expression of Oct-4 were 88.6% and 61.9%, respectively (P=0.035). The 3-year overall survival rates with negative and positive expression of Oct-4 were 77.9% and 49.0%, respectively (P=0.037). Conclusion: The results suggest that embryonic stem cell marker Oct-4 expression may have prognostic significance in patients with rectal adenocarcinoma. However, to confirm this more and larger studies are required.
文摘The incorporation of xyloglucan oligosaccharide (XXXG) into the walls of suspension-cultured tobacco cells accelerated cell expansion followed by cell division, changed cell shape from cylindrical to spherical, decreased cell size, and caused cell aggregation. Fluorescent XXXG added to the culture medium was found to be incorporated into the surface of the entire wall, where strong incorporation occurred not only on the surface, but also in the interface walls between cells during cell division. Cell expansion was always greater in the transverse direction than in the longitudinal direction and then, immediately, expansion led to cell division in the presence of XXXG; this process might result in the high level of cell aggregation seen in cultured tobacco cells. We concluded that the integration of this oligosaccharide into the walls could accelerate not only cell expansion, but also cell division in cultured cells.
文摘To investigate the action mechanisms of a new erythrocyte-derived depressing factor(EDDF), the focus is placed on the effect of EDDF on both cytosolic and nuclear free calcium (Ca2+) transportation in vascular smooth muscle cell (VSMC), as well as the apoptosis and cell cycle of VSMC of rats. EDDF has been extracted from human erythrocytes. The changes of Ca2+ levels in cytoplasm ([Ca2+],) and nucleus ([Ca2+]n) have been observed using a laser scanning confocal microscope together with fluo-3/AM as a calcium indicator. Flow cytometric technique was used to study the effect of EDDF on cell cycle and apoptosis of VSMC. [Ca2+]j and [Ca2+]n were significantly decreased through several different pathways: ( i) it reduced the Ca2+ influx by blocking L-type voltage-dependent calcium channel (L-VDC) and R-type voltage-dependent calcium channel (R-VDC); (ii) it inhibited the Ca2+ release from inositol 1, 4, 5-trisphosphate (IP3) sensitive calcium store; and (iii) activated Ca2+-ATPase of sarcoplasmic reticulum (
基金the National Natural Science Foundation of China (31430054,31621002,31320103904, 81630080,31671405,31471275,and 31501130)the National Key Research and Development Program of China (2017YFA0503600,2016YFA0100500,and 2016YFA0101202)+3 种基金the Ministry of Education (IRT_17R102,20113402130010)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB19000000)National Institutes of Health Grants (CA 164133,DK115812,and DK56292)Central University Grants (WK2070000066).
文摘Tumor metastasis represents the main causes of cancer-related death.Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis,but the underlying mechanisms remain less clear.Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation.CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation.ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation.The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses.Importantly,dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion,as overexpression of the persistent acetylation-mimicking or nonacetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion.Mechanistically,the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6-ACAP4 complex with plasma membrane in response to CCL18 stimulation.Thus,these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.
文摘An electrical cancer biosensor was developed using amine-functionalized vertically aligned carbon nanotubes (VACNTs) conjugated to folic acid (FA) molecules. Specific binding of FA to folate receptor (FR) existing on the membrane of cancer cells assisted their entrapment on VACNTs. For the conjugation of FA to CNTs, amine (--NH2) functional groups were attached to the side walls of the nanotubes by plasma treatment. The amount and shape of entrapped cancer cells on FA-VACNTs were noticeably higher and more uniform than the cells entrapped on bare VACNTs. The comparative signal spike of the FA-VACNTs and VACNTs covered impedance sensor in interaction with the same concentration of lung cancer cells (QUDB) showed sharper response for the functionalized sensor. Moreover, electron microscopy and florescent images as well as impedance diagrams verified the spherical and non-deformed shape of the cells entrapped by FA-VACNT, This sensor would be useful in assaying the cells vitality in time evolution. This device could be applied in diagnostic and time monitoring applications in the field of cancer such as extreme drug resistance assay (EDR).
文摘A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.
基金the Nomarch Foundation Program of Gansu Province,No. Gs024-A43-015the Foundation of General Charity Committee of Gansu Province
文摘BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill grou
文摘The anti-cancer effect of PSP purified products, PSP-A, PSP-B, PSP-C and crude product PSP-Cr was compared on four human tumor cell lines in vitro. It was found that the inhibition rate of cell proliferation of PSP-A was higher than that of PSP-Cr (P<0. 05). On SPC cells, the inhibition rate of PSP-A at a dosage of 1000μg/ml was 62. 7%, being the highest as compared with those on the other three cell lines. Morphological changes were seen in all the four cell lines, especially in SPC cells after PSP-A treatment.
文摘To study the expression of mTR gene in the testis of SD rats with varied ages and its significance, in situ hybridization (ISH) techniques were applied to detect the expression of telomerase gene mTR mRNA in the testis of SD rats. The expression of mTR was found in testes of different-age male SD rats. There was a positive correlation between the expression of mTR and the location of germ cells (spermatogonia, spermatocyte, spermatid). In Setoli cells, leydig cell and spermatozoa, no telomerase mTR was detectable. Type A spermatogonia expressed the highest level of telomerase mTR mRNA. It was suggested that the expression of mTR gene in the testis of SD rats is of lifetime and coincides with the telomerase activity.