The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-s...The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.展开更多
Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage deve...Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage development around underground excavations represents a key issue in several rock engineeringapplications, including tunnelling, mining, drilling, hydroelectric power generation, and the deepgeological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finitediscreteelement method (FDEM) code to simulate the fracturing mechanisms associated with theexcavation of underground openings in brittle rock formations. A brief review of the current state-of-theartmodelling approaches is initially provided, including the description of selecting continuum- anddiscontinuum-based techniques. Then, the influence of a number of factors, including mechanical and insitu stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for threedifferent geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropicrock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy onthe development of an excavation damaged zone (EDZ) around a tunnel excavated in a layered rockformation is considered. Finally, the interaction mechanisms between two large caverns of an undergroundhydroelectric power station are investigated, with particular emphasis on the rock mass responsesensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEMsimulations can provide unique geomechanical insights in cases where an explicit consideration offracture and fragmentation processes is of paramount importance. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric...To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was gen...Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.展开更多
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu...The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil展开更多
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp...Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.展开更多
In order to reduce the risk associated with water seepage in an underground rock cavern project inSingapore, a reliable hydro-geological model should be established based on the in situ investigationdata. The key chal...In order to reduce the risk associated with water seepage in an underground rock cavern project inSingapore, a reliable hydro-geological model should be established based on the in situ investigationdata. The key challenging issue in the hydro-geological model building is how to integrate limitedgeological and hydro-geological data to determine the hydraulic conductivity of the fractured rockmasses. Based on the data obtained from different stages (feasibility investigation stage, constructionstage, and post-construction stage), suitable models and methods are proposed to determine the hydraulicconductivities at different locations and depths, which will be used at other locations in thefuture. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the ...The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the excavation works. Comparative study was done between models with intact rock mass and discontinuities to assess the stability of cavern as a result of blast loads. Numerical modelling was performed with 3 dimensional distinct element code(3 DEC) to analyse the performance of cavern walls in terms of displacement and to compute peak particle velocities(PPV) both around the cavern periphery and at surface of models. Results showed that the velocity wave with higher frequency exhibited large displacements around the periphery of cavern. Computation of PPV showed that model with horizontal joint sets showed lower PPV in comparison to model with intact rock mass. PPV values were also analysed on the surface for model consisting vertical joints spaced at 4 m intervals. Comparative study of PPV on surface vertically above the blast location between models with horizontal joints spaced at 4 m and vertical joints at 4 m intervals were conducted. Results depicted higher magnitudes of PPV for model with vertical joints in comparison to model with horizontal joints.展开更多
To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynam...To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of展开更多
Purpose: To assess the inter-observer agreement in reading adults chest radiographs (CXR) and determine the effectiveness of observers in radiographic diagnosis of pulmonary tuberculosis (PTB) in a tuberculosis endemi...Purpose: To assess the inter-observer agreement in reading adults chest radiographs (CXR) and determine the effectiveness of observers in radiographic diagnosis of pulmonary tuberculosis (PTB) in a tuberculosis endemic area. Methods: A quasi-observational study was conducted in the Pneumology Department of Yaounde Jamot Hospital (Cameroon) from January to March 2014. This included six observers (two chest physicians, two radiologists, two end-training residents in medical imaging) and 47 frontal CXRs (4 of diffuse interstitial lung disease, 6 normal, 7 of lung cancers, 7 of bacterial pneumonia, 23 of PTB). The sample size was calculated on the basis of an expected 0.47 Kappa with a spread of 0.13 (α = 5%, CI = 95%) for six observers and five diagnostic items. The analysis of concordance was focused on the detection of nodules, cavitary lesions, pleural effusion, adenomegaly and diagnosis of PTB and lung cancer. These intervals of kappa coefficient were considered: discordance (0.81). Results: The average score for the detection of caverns was the highest (58.3%) followed by that of the correct diagnosis of tuberculosis (49.3%). Pneumologists had the highest proportions of correct diagnosis of tuberculosis (69.6% and 73.9%) and better inter-observer agreement (k = 0.71) for PTB diagnosis. Observers were more in agreement for the detection of nodules (0.32 - 0.74), adenomegalies (0.43 - 0.69), and for the diagnosis of cancer (0.22 - 1) than for the diagnosis of tuberculosis (0.19 - 0.71). Disagreements were more frequent for the detection of pleural effusions (-0.08 - 0.73). Conclusion: The inter-observer agreement varies with the type of lesions and diagnosis. Pneumologists were most effective for the diagnosis of pulmonary tuberculosis. Observers were more in agreement for the detection of nodules and the diagnosis of cancer than for the diagnosis of pulmonary tuberculosis.展开更多
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported bythe National Basic Research Program of China+1 种基金Project (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, ChinaProject (201105) supported by Scholarship Award for Excellent Doctoral Student,Ministry of Education, China
文摘The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.
基金supported by the Natural Science and Engineering Research Council (NSERC) of Canada in the form of discovery grant No. 341275the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA)
文摘Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage development around underground excavations represents a key issue in several rock engineeringapplications, including tunnelling, mining, drilling, hydroelectric power generation, and the deepgeological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finitediscreteelement method (FDEM) code to simulate the fracturing mechanisms associated with theexcavation of underground openings in brittle rock formations. A brief review of the current state-of-theartmodelling approaches is initially provided, including the description of selecting continuum- anddiscontinuum-based techniques. Then, the influence of a number of factors, including mechanical and insitu stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for threedifferent geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropicrock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy onthe development of an excavation damaged zone (EDZ) around a tunnel excavated in a layered rockformation is considered. Finally, the interaction mechanisms between two large caverns of an undergroundhydroelectric power station are investigated, with particular emphasis on the rock mass responsesensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEMsimulations can provide unique geomechanical insights in cases where an explicit consideration offracture and fragmentation processes is of paramount importance. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Project(2017YFC1501100)supported by the National Key R&D Program of ChinaProjects(51809221,51679158)supported by the National Natural Science Foundation of China。
文摘To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
基金Projects(51809221,51679158)supported by the National Natural Science Foundation of ChinaProject(KFJJ20-06M)supported by the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology),China。
文摘Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.
文摘The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil
基金the financial support from the Natural Science Foundation of China (Nos.52179118,52209151 and 42307238)the Science and Technology Project of Jiangsu Provincial Department of Science and Technology-Carbon Emissions Peak and Carbon Neutrality Science and Technology Innovation Specia Fund Project (No.BK20220025)+3 种基金the Excellent Postdoctoral Program of Jiangsu Province (No.2023ZB602)the China Postdoctora Science Foundation (Nos.2023M733773 and 2023M733772)Xuzhou City Science and Technology Innovation Special Basic Research Plan (KC23045)State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining&Technology (No SKLGDUEK1916)。
文摘Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.
文摘In order to reduce the risk associated with water seepage in an underground rock cavern project inSingapore, a reliable hydro-geological model should be established based on the in situ investigationdata. The key challenging issue in the hydro-geological model building is how to integrate limitedgeological and hydro-geological data to determine the hydraulic conductivity of the fractured rockmasses. Based on the data obtained from different stages (feasibility investigation stage, constructionstage, and post-construction stage), suitable models and methods are proposed to determine the hydraulicconductivities at different locations and depths, which will be used at other locations in thefuture. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the excavation works. Comparative study was done between models with intact rock mass and discontinuities to assess the stability of cavern as a result of blast loads. Numerical modelling was performed with 3 dimensional distinct element code(3 DEC) to analyse the performance of cavern walls in terms of displacement and to compute peak particle velocities(PPV) both around the cavern periphery and at surface of models. Results showed that the velocity wave with higher frequency exhibited large displacements around the periphery of cavern. Computation of PPV showed that model with horizontal joint sets showed lower PPV in comparison to model with intact rock mass. PPV values were also analysed on the surface for model consisting vertical joints spaced at 4 m intervals. Comparative study of PPV on surface vertically above the blast location between models with horizontal joints spaced at 4 m and vertical joints at 4 m intervals were conducted. Results depicted higher magnitudes of PPV for model with vertical joints in comparison to model with horizontal joints.
基金financial supports for this research project by the National Natural Science Foundation of China(No.41602308)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005.
文摘To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of
文摘Purpose: To assess the inter-observer agreement in reading adults chest radiographs (CXR) and determine the effectiveness of observers in radiographic diagnosis of pulmonary tuberculosis (PTB) in a tuberculosis endemic area. Methods: A quasi-observational study was conducted in the Pneumology Department of Yaounde Jamot Hospital (Cameroon) from January to March 2014. This included six observers (two chest physicians, two radiologists, two end-training residents in medical imaging) and 47 frontal CXRs (4 of diffuse interstitial lung disease, 6 normal, 7 of lung cancers, 7 of bacterial pneumonia, 23 of PTB). The sample size was calculated on the basis of an expected 0.47 Kappa with a spread of 0.13 (α = 5%, CI = 95%) for six observers and five diagnostic items. The analysis of concordance was focused on the detection of nodules, cavitary lesions, pleural effusion, adenomegaly and diagnosis of PTB and lung cancer. These intervals of kappa coefficient were considered: discordance (0.81). Results: The average score for the detection of caverns was the highest (58.3%) followed by that of the correct diagnosis of tuberculosis (49.3%). Pneumologists had the highest proportions of correct diagnosis of tuberculosis (69.6% and 73.9%) and better inter-observer agreement (k = 0.71) for PTB diagnosis. Observers were more in agreement for the detection of nodules (0.32 - 0.74), adenomegalies (0.43 - 0.69), and for the diagnosis of cancer (0.22 - 1) than for the diagnosis of tuberculosis (0.19 - 0.71). Disagreements were more frequent for the detection of pleural effusions (-0.08 - 0.73). Conclusion: The inter-observer agreement varies with the type of lesions and diagnosis. Pneumologists were most effective for the diagnosis of pulmonary tuberculosis. Observers were more in agreement for the detection of nodules and the diagnosis of cancer than for the diagnosis of pulmonary tuberculosis.