Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact repr...Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact representation of complex uncertain causalities and efficient probabilistie inference. It is pointed out that the existing models of compact representation and inference in Bayesian Network (BN) is applicable in single-valued cases, but may not be suitable to be applied in multi-valued cases. DUCG overcomes this problem and beyond. The main features of DUCG are: 1) compactly and graphically representing complex conditional probability distributions (CPDs), regardless of whether the cases are single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation; 3) simplifying the graphical knowledge base conditional on observations before other calculations, so that the scale and complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these hypotheses; and 5) much less relying on the parameter accuracy. An alarm system example is provided to illustrate the DUCG methodology.展开更多
Mining causality is essential to provide a diagnosis within multiple sentences or EDUs (Elementary Discourse Unit) This research aims at extracting the causality existing The research emphasizes the use of causality...Mining causality is essential to provide a diagnosis within multiple sentences or EDUs (Elementary Discourse Unit) This research aims at extracting the causality existing The research emphasizes the use of causality verbs because they make explicit in a certain way the consequent events of a cause, e.g., "Aphids suck the sap from rice leaves. Then leaves will shrink. Later, they will become yellow and dry.". A verb can also be the causal-verb link between cause and effect within EDU(s), e.g., "Aphids suck the sap from rice leaves causing leaves to be shrunk" ("causing" is equivalent, to a causal-verb link in Thai). The research confronts two main problems: identifying the interesting causality events from documents and identifying their boundaries. Then, we propose mining on verbs by using two different machine learning techniques, Naive Bayes classifier and Support Vector Machine. The resulted mining rules will be used for the identification and the causality extraction of the multiple EDUs from text. Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Naive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine.展开更多
Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing caus...Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing causality within structural engineering systems.In this pursuit,this paper starts with a gentle introduction to causality.Then,this paper pivots to contrast commonly adopted methods for inferring causes and effects,i.e.,induction(empiricism)and deduc-tion(rationalism),and outlines how these methods continue to shape our structural engineering philosophy and,by extension,our domain.The bulk of this paper is dedicated to establishing an approach and criteria to tie principles of induction and deduction to derive causal laws(i.e.,mapping functions)through explainable artificial intelligence(XAI)capable of describing new knowledge pertaining to structural engineering phenomena.The proposed approach and criteria are then examined via a case study.展开更多
Explanation knowledge expressed by a graph,especially in the graphical model,is essential to comprehend clearly all paths of effect events in causality for basic diagnosis.This research focuses on determining the effe...Explanation knowledge expressed by a graph,especially in the graphical model,is essential to comprehend clearly all paths of effect events in causality for basic diagnosis.This research focuses on determining the effect boundary using a statistical based approach and patterns of effect events in the graph whether they are consequence or concurrence without temporal markers.All necessary causality events from texts for the graph construction are extracted on multiple clauses/EDUs(Elementary Discourse Units) which assist in determining effect-event patterns from written event sequences in documents.To extract the causality events from documents,it has to face the effect-boundary determination problems after applying verb pair rules(a causative verb and an effect verb) to identify the causality.Therefore,we propose Bayesian Network and Maximum entropy to determine the boundary of the effect EDUs.We also propose learning the effect-verb order pairs from the adjacent effect EDUs to solve the effect-event patterns for representing the extracted causality by the graph construction.The accuracy result of the explanation knowledge graph construction is 90%based on expert judgments whereas the average accuracy results from the effect boundary determination by Bayesian Network and Maximum entropy are 90%and 93%,respectively.展开更多
Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations.However, difficulties associated with computational overload, ubiquitous uncertainties and i...Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations.However, difficulties associated with computational overload, ubiquitous uncertainties and insufficient fault samples hamper the engineering application of intelligent fault diagnosis technology. Geared towards the settlement of these problems, this paper introduces the method of dynamic uncertain causality graph, which is a new attempt to model complex behaviors of real-world systems under uncertainties. The visual representation to causality pathways and self-relied "chaining" inference mechanisms are analyzed. In particular, some solutions are investigated for the diagnostic reasoning algorithm to aim at reducing its computational complexity and improving the robustness to potential losses and imprecisions in observations. To evaluate the effectiveness and performance of this method, experiments are conducted using both synthetic calculation cases and generator faults of a nuclear power plant. The results manifest the high diagnostic accuracy and efficiency, suggesting its practical significance in large-scale industrial applications.展开更多
基金supported by Guangdong Nuclear Power Group of China under Contract No. CNPRI-ST10P005the National Natural Science Foundation of China under Grant No. 60643006
文摘Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact representation of complex uncertain causalities and efficient probabilistie inference. It is pointed out that the existing models of compact representation and inference in Bayesian Network (BN) is applicable in single-valued cases, but may not be suitable to be applied in multi-valued cases. DUCG overcomes this problem and beyond. The main features of DUCG are: 1) compactly and graphically representing complex conditional probability distributions (CPDs), regardless of whether the cases are single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation; 3) simplifying the graphical knowledge base conditional on observations before other calculations, so that the scale and complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these hypotheses; and 5) much less relying on the parameter accuracy. An alarm system example is provided to illustrate the DUCG methodology.
基金This work has been supported by the National Electronics and Computer Technology(lenter(NECTEC)under Grant No.NT-B-22-14-12-46-06 and partially supported by the FAO grant.
文摘Mining causality is essential to provide a diagnosis within multiple sentences or EDUs (Elementary Discourse Unit) This research aims at extracting the causality existing The research emphasizes the use of causality verbs because they make explicit in a certain way the consequent events of a cause, e.g., "Aphids suck the sap from rice leaves. Then leaves will shrink. Later, they will become yellow and dry.". A verb can also be the causal-verb link between cause and effect within EDU(s), e.g., "Aphids suck the sap from rice leaves causing leaves to be shrunk" ("causing" is equivalent, to a causal-verb link in Thai). The research confronts two main problems: identifying the interesting causality events from documents and identifying their boundaries. Then, we propose mining on verbs by using two different machine learning techniques, Naive Bayes classifier and Support Vector Machine. The resulted mining rules will be used for the identification and the causality extraction of the multiple EDUs from text. Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Naive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine.
文摘Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing causality within structural engineering systems.In this pursuit,this paper starts with a gentle introduction to causality.Then,this paper pivots to contrast commonly adopted methods for inferring causes and effects,i.e.,induction(empiricism)and deduc-tion(rationalism),and outlines how these methods continue to shape our structural engineering philosophy and,by extension,our domain.The bulk of this paper is dedicated to establishing an approach and criteria to tie principles of induction and deduction to derive causal laws(i.e.,mapping functions)through explainable artificial intelligence(XAI)capable of describing new knowledge pertaining to structural engineering phenomena.The proposed approach and criteria are then examined via a case study.
基金Supported by the Thai Research Fund under Grant No.MRG5280094.
文摘Explanation knowledge expressed by a graph,especially in the graphical model,is essential to comprehend clearly all paths of effect events in causality for basic diagnosis.This research focuses on determining the effect boundary using a statistical based approach and patterns of effect events in the graph whether they are consequence or concurrence without temporal markers.All necessary causality events from texts for the graph construction are extracted on multiple clauses/EDUs(Elementary Discourse Units) which assist in determining effect-event patterns from written event sequences in documents.To extract the causality events from documents,it has to face the effect-boundary determination problems after applying verb pair rules(a causative verb and an effect verb) to identify the causality.Therefore,we propose Bayesian Network and Maximum entropy to determine the boundary of the effect EDUs.We also propose learning the effect-verb order pairs from the adjacent effect EDUs to solve the effect-event patterns for representing the extracted causality by the graph construction.The accuracy result of the explanation knowledge graph construction is 90%based on expert judgments whereas the average accuracy results from the effect boundary determination by Bayesian Network and Maximum entropy are 90%and 93%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.61050005 and 61273330)Research Foundation for the Doctoral Program of China Ministry of Education(No.20120002110037)+1 种基金the 2014 Teaching Reform Project of Shandong Normal UniversityDevelopment Project of China Guangdong Nuclear Power Group(No.CNPRI-ST10P005)
文摘Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations.However, difficulties associated with computational overload, ubiquitous uncertainties and insufficient fault samples hamper the engineering application of intelligent fault diagnosis technology. Geared towards the settlement of these problems, this paper introduces the method of dynamic uncertain causality graph, which is a new attempt to model complex behaviors of real-world systems under uncertainties. The visual representation to causality pathways and self-relied "chaining" inference mechanisms are analyzed. In particular, some solutions are investigated for the diagnostic reasoning algorithm to aim at reducing its computational complexity and improving the robustness to potential losses and imprecisions in observations. To evaluate the effectiveness and performance of this method, experiments are conducted using both synthetic calculation cases and generator faults of a nuclear power plant. The results manifest the high diagnostic accuracy and efficiency, suggesting its practical significance in large-scale industrial applications.