The oxidative polymerization of aryl sulfoxides provides a novel polysulfo-nium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantita-tive yield. The polymerization proceeds efficiently in ...The oxidative polymerization of aryl sulfoxides provides a novel polysulfo-nium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantita-tive yield. The polymerization proceeds efficiently in an acidic solution under atmosphericconditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acety-lacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen ox-idative polymerization. The polymerization mechanism involves multielectron oxidation ofthe sulfides followed by successive electrophilic substitution. The resulting polyarylenesul-fonium cations are useful as a soluble precursor for the synthesis of high molecular weight(M_w>10~5) poly(thio arylne)s.展开更多
Orchestrating conflicting polymerization mechanisms in a single polymerization process through one external stimulus is a prerequisite to achieve in-situ selective synthesis of different monomers. Here we report an el...Orchestrating conflicting polymerization mechanisms in a single polymerization process through one external stimulus is a prerequisite to achieve in-situ selective synthesis of different monomers. Here we report an electrochemically controlled mechanism transformation that enables selective activation of living cationic or radical polymerization via an alternating voltage and dual electrocatalysts. Using identical mixed-monomer condition, a variety of desired block copolymer structures, including diblock, multiblock, random, and tapered copolymers can be obtained by simply varying the periods or phases of the alternating potential. Moreover, merging this electro-interconverted polymerization with a flow-chemistry technique can streamline preparation of functional polymer materials with complex multiblock structure. This study would offer a new vision on large-scale electrochemical synthesis of sequence-defined polymers.展开更多
基金This work was partially supported by a Grant-in-Aid for Research Fellow of the Japan Society for the Promotion of Science(No.085410)and International Scientific Research(Joint Research No.08044174)from the Ministry of Education,Science,Sports and Culture
文摘The oxidative polymerization of aryl sulfoxides provides a novel polysulfo-nium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantita-tive yield. The polymerization proceeds efficiently in an acidic solution under atmosphericconditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acety-lacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen ox-idative polymerization. The polymerization mechanism involves multielectron oxidation ofthe sulfides followed by successive electrophilic substitution. The resulting polyarylenesul-fonium cations are useful as a soluble precursor for the synthesis of high molecular weight(M_w>10~5) poly(thio arylne)s.
基金supported by the National Natural Science Foundation of China (21674022, 51703034)
文摘Orchestrating conflicting polymerization mechanisms in a single polymerization process through one external stimulus is a prerequisite to achieve in-situ selective synthesis of different monomers. Here we report an electrochemically controlled mechanism transformation that enables selective activation of living cationic or radical polymerization via an alternating voltage and dual electrocatalysts. Using identical mixed-monomer condition, a variety of desired block copolymer structures, including diblock, multiblock, random, and tapered copolymers can be obtained by simply varying the periods or phases of the alternating potential. Moreover, merging this electro-interconverted polymerization with a flow-chemistry technique can streamline preparation of functional polymer materials with complex multiblock structure. This study would offer a new vision on large-scale electrochemical synthesis of sequence-defined polymers.