We herein uncovered an electrochemical C—H halogenation protocol that synergistically combines anodic oxidation and cathodic reduction for C—X bond formation. The reaction was demonstrated under exogenous-oxidant-fr...We herein uncovered an electrochemical C—H halogenation protocol that synergistically combines anodic oxidation and cathodic reduction for C—X bond formation. The reaction was demonstrated under exogenous-oxidant-free conditions. Moreover, this is the first example of activating CBr4, CHBr3, and CCl3Br under electrochemical conditions.展开更多
Compared with general redox chemistry,electrochemistry using the electron as a potent,controllable,yet traceless alternative to chemical oxidants/reductants usually offers more sustainable options for achieving select...Compared with general redox chemistry,electrochemistry using the electron as a potent,controllable,yet traceless alternative to chemical oxidants/reductants usually offers more sustainable options for achieving selective organic synthesis.With its environmentally benign features gradually being uncovered and studied,organic electrosynthesis is currently undergoing a revival and becoming a rapidly growing area within the synthetic community.Among the electrochemical transformations,the anodically enabled ones have been far more extensively exploited than those driven by cathodic reduction,although both approaches are conceptually attractive.To stimulate the development of cathodically enabled organic reactions,this review summarizes the recently developed reductive electrosynthetic protocols,discussing and highlighting reaction features,substrate scopes,applications,and plausible mechanisms to reveal the recent trends in this area.Herein,cathodic reduction-enabled preparative organic transformations are categorized into four types:reduction of(1)unsaturated hydrocarbons,(2)heteroatom-containing carbon-based unsaturated systems,(3)saturated C-hetero or C–C polar/strained bonds,and(4)hetero-hetero linkages.Apart from net electroreductive reactions,a few examples of reductive photo-electrosynthesis as well as paired electrolysis are also introduced,which offer opportunities to overcome certain limitations and improve synthetic versatility.The electrochemically driven,transition metal-catalyzed reductive cross-couplings that have been comprehensively discussed in several other recent reviews are not included here.展开更多
基金the National Natural Science Foundation of China (No.21520102003)Introducing Talents of Discipline to Universities of China (111 Program).
文摘We herein uncovered an electrochemical C—H halogenation protocol that synergistically combines anodic oxidation and cathodic reduction for C—X bond formation. The reaction was demonstrated under exogenous-oxidant-free conditions. Moreover, this is the first example of activating CBr4, CHBr3, and CCl3Br under electrochemical conditions.
基金Beijing Normal University is acknowledged for providing financial support.
文摘Compared with general redox chemistry,electrochemistry using the electron as a potent,controllable,yet traceless alternative to chemical oxidants/reductants usually offers more sustainable options for achieving selective organic synthesis.With its environmentally benign features gradually being uncovered and studied,organic electrosynthesis is currently undergoing a revival and becoming a rapidly growing area within the synthetic community.Among the electrochemical transformations,the anodically enabled ones have been far more extensively exploited than those driven by cathodic reduction,although both approaches are conceptually attractive.To stimulate the development of cathodically enabled organic reactions,this review summarizes the recently developed reductive electrosynthetic protocols,discussing and highlighting reaction features,substrate scopes,applications,and plausible mechanisms to reveal the recent trends in this area.Herein,cathodic reduction-enabled preparative organic transformations are categorized into four types:reduction of(1)unsaturated hydrocarbons,(2)heteroatom-containing carbon-based unsaturated systems,(3)saturated C-hetero or C–C polar/strained bonds,and(4)hetero-hetero linkages.Apart from net electroreductive reactions,a few examples of reductive photo-electrosynthesis as well as paired electrolysis are also introduced,which offer opportunities to overcome certain limitations and improve synthetic versatility.The electrochemically driven,transition metal-catalyzed reductive cross-couplings that have been comprehensively discussed in several other recent reviews are not included here.