The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode mat...The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials.Electrolyte optimization is an effective approach to suppress such an adverse side reaction,thereby enhancing the electrochemical properties.Herein,a novel boron-based film forming additive,tris(2,2,2-trifluoroethyl)borate(TTFEB),has been introduced to regulate the interphasial chemistry of LiNi0.8Mn0.1Co0.1O2(NMC811)cathode to improve its long-term cyclability and rate properties.The results of multi-model diagnostic study reveal that formation lithium fluoride(LiF)-rich and boron(B)containing cathode electrolyte interphase(CEI)not only stabilizes cathode surface,but also prevents electrolyte decomposition.Moreover,homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI,reducing the interphasial resistance.Remarkably,the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8%after 350 electrochemical cycles at a 1 C current rate,which is significantly higher than that of the cell cycled in the conventional electrolyte(59.7%).These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry.展开更多
Titanium nitride (TIN) films were deposited on AISI 304 stainless steel substrates using hollow cathode plasma physical vapor deposition (HC-PVD). Titanium was introduced by eroding the Ti cathode nozzle and TiN w...Titanium nitride (TIN) films were deposited on AISI 304 stainless steel substrates using hollow cathode plasma physical vapor deposition (HC-PVD). Titanium was introduced by eroding the Ti cathode nozzle and TiN was formed in the presence of a nitrogen plasma excited by radio frequency (RF). The substrate bias voltage was varied from 0 to -300 V and the uniformity in film thickness, surface roughness, crystal size, microhardness and wear resistance for the film with a diameter of 20 mm was evaluated. Although the central zone of the plasma had the highest ion density, the film thickness did not vary appreciably across the sample. The results from atomic force microscopy (AFM) revealed a low surface roughness dominated by an island-like morphology with a similar crystal size on the entire surface. Higher microhardness was measured at the central zone of the sample. The sample treated at -200 V had excellent tribological properties and uniformity.展开更多
Tris(trimethylsilyl)borate(TMSB) has been intensively studied to improve the performances of lithiumion batteries. However, it is still an interesting issue needed to be resolved for the research on the Li^(+) solvati...Tris(trimethylsilyl)borate(TMSB) has been intensively studied to improve the performances of lithiumion batteries. However, it is still an interesting issue needed to be resolved for the research on the Li^(+) solvation structure affected by TMSB additive. Herein, the electrochemical tests, quantum chemistry calculations, potential-resolved in-situ electrochemical impedance spectroscopy measurements and surface analyses were used to explore the effects of Li^(+) solvation structure with TMSB additive on the formation of the cathode electrolyte interface(CEI) film in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li half cells. The results reveal that the TMSB additive is easy to complex with Li^(+) ion, thus weaken the intermolecular force between Li^(+) ions and ethylene carbonate solvent, which is benefit for the cycle performance. Besides, the changed Li^(+) solvation structure results in a thin and dense CEI film containing compounds with Si–O and B–O bonds which is favorable to the transfer of Li^(+) ions. As a result, the performances of the LNCM811/Li half cells are effectively improved. This research provides a new idea to construct a high-performance CEI film by adjusting the Li^(+) solvation structures.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22209106).
文摘The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials.Electrolyte optimization is an effective approach to suppress such an adverse side reaction,thereby enhancing the electrochemical properties.Herein,a novel boron-based film forming additive,tris(2,2,2-trifluoroethyl)borate(TTFEB),has been introduced to regulate the interphasial chemistry of LiNi0.8Mn0.1Co0.1O2(NMC811)cathode to improve its long-term cyclability and rate properties.The results of multi-model diagnostic study reveal that formation lithium fluoride(LiF)-rich and boron(B)containing cathode electrolyte interphase(CEI)not only stabilizes cathode surface,but also prevents electrolyte decomposition.Moreover,homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI,reducing the interphasial resistance.Remarkably,the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8%after 350 electrochemical cycles at a 1 C current rate,which is significantly higher than that of the cell cycled in the conventional electrolyte(59.7%).These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry.
基金Supported by National Natural Science Foundation of China (Nos.10775036, 50773015)Program for New Century Excellent Talents in University in ChinaCity University of Hong Kong Strategic Research of China (No.7002138)
文摘Titanium nitride (TIN) films were deposited on AISI 304 stainless steel substrates using hollow cathode plasma physical vapor deposition (HC-PVD). Titanium was introduced by eroding the Ti cathode nozzle and TiN was formed in the presence of a nitrogen plasma excited by radio frequency (RF). The substrate bias voltage was varied from 0 to -300 V and the uniformity in film thickness, surface roughness, crystal size, microhardness and wear resistance for the film with a diameter of 20 mm was evaluated. Although the central zone of the plasma had the highest ion density, the film thickness did not vary appreciably across the sample. The results from atomic force microscopy (AFM) revealed a low surface roughness dominated by an island-like morphology with a similar crystal size on the entire surface. Higher microhardness was measured at the central zone of the sample. The sample treated at -200 V had excellent tribological properties and uniformity.
基金supported by the National Natural Science Foundation of China(51962019)the Natural Science Foundation of Gansu Province(20JR5RA469)+1 种基金the Education Department of Gansu Province:"Star of Innovation"Project for Outstanding Graduate Students(2021CXZX-455)the Lanzhou University of Technology Hongliu First-class Discipline Construction Program。
文摘Tris(trimethylsilyl)borate(TMSB) has been intensively studied to improve the performances of lithiumion batteries. However, it is still an interesting issue needed to be resolved for the research on the Li^(+) solvation structure affected by TMSB additive. Herein, the electrochemical tests, quantum chemistry calculations, potential-resolved in-situ electrochemical impedance spectroscopy measurements and surface analyses were used to explore the effects of Li^(+) solvation structure with TMSB additive on the formation of the cathode electrolyte interface(CEI) film in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li half cells. The results reveal that the TMSB additive is easy to complex with Li^(+) ion, thus weaken the intermolecular force between Li^(+) ions and ethylene carbonate solvent, which is benefit for the cycle performance. Besides, the changed Li^(+) solvation structure results in a thin and dense CEI film containing compounds with Si–O and B–O bonds which is favorable to the transfer of Li^(+) ions. As a result, the performances of the LNCM811/Li half cells are effectively improved. This research provides a new idea to construct a high-performance CEI film by adjusting the Li^(+) solvation structures.