In the present work, one-dimensional nanostructures of silicon oxide (SiOx) have been synthesized by thermal annealing method with and without chromium thin film on silicon substrate. The synthesis was carried out at ...In the present work, one-dimensional nanostructures of silicon oxide (SiOx) have been synthesized by thermal annealing method with and without chromium thin film on silicon substrate. The synthesis was carried out at different process temperatures ranging from 1000°C to 1100°C by using gold/chromium (Au/Cr) catalysts stack layer on the Si substrate in nitrogen (N2) ambience. The as-synthesized SiOx nanostructures have tetragonal rutile structure and show polycrystalline nature. The SEM images reveal wire-like nanostructures on the substrate with and without chromium thin film. Under the catalytic reaction of the gold/chromium metal, the density of SiOx nanowires is enhanced, since the Cr layer serves as a diffusion barrier for the diffusion of the gold downwards into the Si substrate. The vapor-liquid solid (VLS) growth mechanism is found to be dominant in the growth of SiOx nanowires. Furthermore, X-Ray diffraction microscopy (XRD) and Photoluminescence spectroscopy (PL) analysis conclude the defect free growth of the SiOx nanowires on gold/chrome/silicon substrate.展开更多
文摘In the present work, one-dimensional nanostructures of silicon oxide (SiOx) have been synthesized by thermal annealing method with and without chromium thin film on silicon substrate. The synthesis was carried out at different process temperatures ranging from 1000°C to 1100°C by using gold/chromium (Au/Cr) catalysts stack layer on the Si substrate in nitrogen (N2) ambience. The as-synthesized SiOx nanostructures have tetragonal rutile structure and show polycrystalline nature. The SEM images reveal wire-like nanostructures on the substrate with and without chromium thin film. Under the catalytic reaction of the gold/chromium metal, the density of SiOx nanowires is enhanced, since the Cr layer serves as a diffusion barrier for the diffusion of the gold downwards into the Si substrate. The vapor-liquid solid (VLS) growth mechanism is found to be dominant in the growth of SiOx nanowires. Furthermore, X-Ray diffraction microscopy (XRD) and Photoluminescence spectroscopy (PL) analysis conclude the defect free growth of the SiOx nanowires on gold/chrome/silicon substrate.