An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that b...An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film. With increasing the binary basicity, the heat flux of slag film decreases at first, reaches the minimum at the basicity of 1.4, and then increases, indicating that the maximum binary basicity is about 1.4 for selecting "mild cooling" mold powder. The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film. Recrystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.展开更多
The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the she...The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.展开更多
Lubrication and friction between the mould and strand are strongly influenced by mould oscillation, and play an important role in slab quality and operating safety during continuous casting processes. Investigation of...Lubrication and friction between the mould and strand are strongly influenced by mould oscillation, and play an important role in slab quality and operating safety during continuous casting processes. Investigation of mould oscillation is therefore essential for getting a better online control of the mould processes. A feasible approach for the development and optimization of mould oscillation was put forward, which combined online measurement of mould friction, design of negative oscillating parameters and evaluation for powder consumption. Three different control models including sinusoidal and non-sinusoidal oscillation for mould oscillations were developed to investigate and evaluate the effects of oscillation on mould friction and powder lubrication. For the purpose of investigating mould friction between mould and strand, online measurement was carried out on a slab continuous caster equipped with a hydraulic oscillator. Also the comparison of the mould friction in sinusoidal and non-sinusoidal mould oscillation was made for subsequent analysis. The industrial experiment result shows that the combination of inverse control model and non-sinusoidal oscillation mode will contribute to the proper powder consumption, leading to a suitable effect of friction force on strand surface, especially for high speed continuous casting. The proposed method provides reliable basis for guiding and optimizing mould oscillation among control models, sinusoidal oscillation and non-sinusoidal oscillation.展开更多
This paper explained the mechanism of carbon pickup by ultra low carbon steels during continuous casting and indicated that the major cause of carbon pickup is the contact of the molten steel with the enriched carb...This paper explained the mechanism of carbon pickup by ultra low carbon steels during continuous casting and indicated that the major cause of carbon pickup is the contact of the molten steel with the enriched carbon layer of the powder. Forming of the enriched carbon layer is due to the existing of “carbon core”. Accordingly, the measures to reduce the carbon content and amount of the enriched carbon layer were investigated. A kind of new powder has been developed and successfully used to minimize the carbon pickup by ultra low carbon steels during continuous casting.展开更多
The No. 3 slab caster,which mainly provides slabs to the 5000 mm plate mill at Baosteel, was put into production in December,2004. The size of the biggest slab produced by this caster is 2300 mm in width and 300 mm in...The No. 3 slab caster,which mainly provides slabs to the 5000 mm plate mill at Baosteel, was put into production in December,2004. The size of the biggest slab produced by this caster is 2300 mm in width and 300 mm in thickness. The designed output of the caster is 2.3 Mt/a. Slab surface longitudinal crack defects,which were related to the heat flux of the mold, frequently occurred in the early stage of the startup of the caster. As mild cooling powder is beneficial to the uniformity of the shell of initial slabs ,the concentration of stress is reduced, and the longitudinal cracking on the surface is avoided. This study evaluates the performance of several kinds of powder, and the results show that mold powder of high basicity, high crystallization proportion and low heat flux is to the benefit of the reduction of the longitudinal cracks on the surface and the defects of slabs.展开更多
The horizontal and vertical velocity components of molten steel in a slab continuous casting mold produced by three different two-port Submerged Entry Nozzle (SEN) designs are monitored and compared using Computationa...The horizontal and vertical velocity components of molten steel in a slab continuous casting mold produced by three different two-port Submerged Entry Nozzle (SEN) designs are monitored and compared using Computational Fluid Dynamics (CFD) simulations. These two ports designs correspond to a conventional cylindrical SEN, a plate SEN and an anchor-shaped SEN. Four monitoring points at the molten steel in the centered vertical plane were selected to track the horizontal and the vertical component of the velocity vector. Two of them are located near the free surface and the remaining two are located in the vicinity of the SEN discharge nozzles. Some statistical values of the time series of above the velocity components are analyzed and correlated with the Kelvin-Helmholtz instability and the Karman vortex streets, which cause mold powder entrapment in the molten steel.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50574109)
文摘An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film. With increasing the binary basicity, the heat flux of slag film decreases at first, reaches the minimum at the basicity of 1.4, and then increases, indicating that the maximum binary basicity is about 1.4 for selecting "mild cooling" mold powder. The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film. Recrystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.
文摘The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.
基金Item Sponsored by National Natural Science Foundation of China(51004012)National High-Tech Research and Development Program (863 Program) of China (2009AA04Z134)China Postdoctoral Science Foundation (2012M520621)
文摘Lubrication and friction between the mould and strand are strongly influenced by mould oscillation, and play an important role in slab quality and operating safety during continuous casting processes. Investigation of mould oscillation is therefore essential for getting a better online control of the mould processes. A feasible approach for the development and optimization of mould oscillation was put forward, which combined online measurement of mould friction, design of negative oscillating parameters and evaluation for powder consumption. Three different control models including sinusoidal and non-sinusoidal oscillation for mould oscillations were developed to investigate and evaluate the effects of oscillation on mould friction and powder lubrication. For the purpose of investigating mould friction between mould and strand, online measurement was carried out on a slab continuous caster equipped with a hydraulic oscillator. Also the comparison of the mould friction in sinusoidal and non-sinusoidal mould oscillation was made for subsequent analysis. The industrial experiment result shows that the combination of inverse control model and non-sinusoidal oscillation mode will contribute to the proper powder consumption, leading to a suitable effect of friction force on strand surface, especially for high speed continuous casting. The proposed method provides reliable basis for guiding and optimizing mould oscillation among control models, sinusoidal oscillation and non-sinusoidal oscillation.
基金Project Sponsored by Natural Science Foundation of Shanghai(97XD14005)
文摘This paper explained the mechanism of carbon pickup by ultra low carbon steels during continuous casting and indicated that the major cause of carbon pickup is the contact of the molten steel with the enriched carbon layer of the powder. Forming of the enriched carbon layer is due to the existing of “carbon core”. Accordingly, the measures to reduce the carbon content and amount of the enriched carbon layer were investigated. A kind of new powder has been developed and successfully used to minimize the carbon pickup by ultra low carbon steels during continuous casting.
文摘The No. 3 slab caster,which mainly provides slabs to the 5000 mm plate mill at Baosteel, was put into production in December,2004. The size of the biggest slab produced by this caster is 2300 mm in width and 300 mm in thickness. The designed output of the caster is 2.3 Mt/a. Slab surface longitudinal crack defects,which were related to the heat flux of the mold, frequently occurred in the early stage of the startup of the caster. As mild cooling powder is beneficial to the uniformity of the shell of initial slabs ,the concentration of stress is reduced, and the longitudinal cracking on the surface is avoided. This study evaluates the performance of several kinds of powder, and the results show that mold powder of high basicity, high crystallization proportion and low heat flux is to the benefit of the reduction of the longitudinal cracks on the surface and the defects of slabs.
文摘The horizontal and vertical velocity components of molten steel in a slab continuous casting mold produced by three different two-port Submerged Entry Nozzle (SEN) designs are monitored and compared using Computational Fluid Dynamics (CFD) simulations. These two ports designs correspond to a conventional cylindrical SEN, a plate SEN and an anchor-shaped SEN. Four monitoring points at the molten steel in the centered vertical plane were selected to track the horizontal and the vertical component of the velocity vector. Two of them are located near the free surface and the remaining two are located in the vicinity of the SEN discharge nozzles. Some statistical values of the time series of above the velocity components are analyzed and correlated with the Kelvin-Helmholtz instability and the Karman vortex streets, which cause mold powder entrapment in the molten steel.