分析了超薄铝箔用坯料的生产工艺流程和关键生产技术,对不同铸轧轧辊凸度、铸嘴分流方式、合金化铝液超洁净精炼技术、冷轧轧制工艺和退火工艺进行试验研究,优化生产工艺参数。结果表明,铝熔体中氢含量小于0.11m L/(100 g Al),其铝箔坯...分析了超薄铝箔用坯料的生产工艺流程和关键生产技术,对不同铸轧轧辊凸度、铸嘴分流方式、合金化铝液超洁净精炼技术、冷轧轧制工艺和退火工艺进行试验研究,优化生产工艺参数。结果表明,铝熔体中氢含量小于0.11m L/(100 g Al),其铝箔坯料可稳定轧制出厚度小于0.005 mm的合格超薄铝箔。展开更多
Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(...Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone.展开更多
基金Funded by the National Natural Science Foundation of China(No.51872254)the Yangzhou Hanjiang District Science and Technology Plan Project of China(No.HJM2019006)。
文摘Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone.