Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal a...Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal areas, due to their natural limitations, are only productive for energy crops with strong resistance and tolerance. Cassava, in its longstanding cultivation practices, has marked its adaptability in tropical and subtropical regions. Farmers are allowed to improve reclaimed soils’ fertility, while plants’ canopy coverage could reduce soil erosion. Besides, cassava tubers to be produced as food or fodder can be counted as soil productivity. Breeding advanced cassava varieties on marginal land under proper intensification management and facilitating policies can indeed increase farmers’ income. Some of the projects implemented outside of China speak quite well on that. Additionally, intercropping modes for cassava bring higher incomes than monocropping mode, which simultaneously improves the ecosystem structure and soil conditions. The interspecific cooperation brought by the intercropping pattern has its buffering function and antagonistic effects to counter against plant diseases, pest attacks and weed infestations. It performs as a natural alternative for pesticides and fertilizers with minimal inputs and safe and productive outputs. Although a complete cassava industrial chain has been formed nationwide, there are still challenges like the inadequate use of marginal areas and risks triggered by unfavorable climate, changeable commodity markets, and the composition of the labor force. However, there will still be ample room for further growth of cassava, for recent years have witnessed the acceleration in the circulation of rural land management rights and the stratification of Chinese farmers, which gives an impetus to household management’s dominance as well as the improvements of rural social welfare systems for the overall agricultural efficiency.展开更多
The objectives of this study were to evaluate growth, yield and nutrients removal of five cassava cultivars planted by different planting methods in late rainy season of northeastern Thailand. A split plot design was ...The objectives of this study were to evaluate growth, yield and nutrients removal of five cassava cultivars planted by different planting methods in late rainy season of northeastern Thailand. A split plot design was used in this study. The planting methods (vertical and horizontal) were assigned as main-plots. Cassava cultivars (Rayong-7, Rayong-11, Rayong-72, Huaybong-80 and E-dum) were assigned as sub-plots with four replications. Results showed that vertical planting gave significantly higher fresh storage root yield than those of horizontal planting, across five cassava cultivars. The cultivar Rayong-7 produced maximum fresh storage root yield across two planting methods, but not significantly different from Rayong 11, Huaybong 80 and Edum cultivars. Irrespective of nutrient removal, N, P and K removed ranges from 2.9 - 3.6, 0.8 - 1.3 and 5.3 - 7.9 kg per ton fresh root weight, respectively depending on cassava cultivar. The cultivar Rayong-7 removed the highest quantities of N, and the cultivar Rayong-11 removed maximum of P and K in the present study. Regardless of nutrient removal at different plant parts;N, P and K removed maximum quantities in leaf, stem and storage root, respectively. Planting method had no significant effect on N and P removal, but significant effect on K removal. The vertical planting removed K higher than those of horizontal planting.展开更多
文摘Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal areas, due to their natural limitations, are only productive for energy crops with strong resistance and tolerance. Cassava, in its longstanding cultivation practices, has marked its adaptability in tropical and subtropical regions. Farmers are allowed to improve reclaimed soils’ fertility, while plants’ canopy coverage could reduce soil erosion. Besides, cassava tubers to be produced as food or fodder can be counted as soil productivity. Breeding advanced cassava varieties on marginal land under proper intensification management and facilitating policies can indeed increase farmers’ income. Some of the projects implemented outside of China speak quite well on that. Additionally, intercropping modes for cassava bring higher incomes than monocropping mode, which simultaneously improves the ecosystem structure and soil conditions. The interspecific cooperation brought by the intercropping pattern has its buffering function and antagonistic effects to counter against plant diseases, pest attacks and weed infestations. It performs as a natural alternative for pesticides and fertilizers with minimal inputs and safe and productive outputs. Although a complete cassava industrial chain has been formed nationwide, there are still challenges like the inadequate use of marginal areas and risks triggered by unfavorable climate, changeable commodity markets, and the composition of the labor force. However, there will still be ample room for further growth of cassava, for recent years have witnessed the acceleration in the circulation of rural land management rights and the stratification of Chinese farmers, which gives an impetus to household management’s dominance as well as the improvements of rural social welfare systems for the overall agricultural efficiency.
文摘The objectives of this study were to evaluate growth, yield and nutrients removal of five cassava cultivars planted by different planting methods in late rainy season of northeastern Thailand. A split plot design was used in this study. The planting methods (vertical and horizontal) were assigned as main-plots. Cassava cultivars (Rayong-7, Rayong-11, Rayong-72, Huaybong-80 and E-dum) were assigned as sub-plots with four replications. Results showed that vertical planting gave significantly higher fresh storage root yield than those of horizontal planting, across five cassava cultivars. The cultivar Rayong-7 produced maximum fresh storage root yield across two planting methods, but not significantly different from Rayong 11, Huaybong 80 and Edum cultivars. Irrespective of nutrient removal, N, P and K removed ranges from 2.9 - 3.6, 0.8 - 1.3 and 5.3 - 7.9 kg per ton fresh root weight, respectively depending on cassava cultivar. The cultivar Rayong-7 removed the highest quantities of N, and the cultivar Rayong-11 removed maximum of P and K in the present study. Regardless of nutrient removal at different plant parts;N, P and K removed maximum quantities in leaf, stem and storage root, respectively. Planting method had no significant effect on N and P removal, but significant effect on K removal. The vertical planting removed K higher than those of horizontal planting.