In order to gain a better knowledge of the mechanisms and to calibrate computational fluid dynamics (CFD) tools including both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), a detailed a...In order to gain a better knowledge of the mechanisms and to calibrate computational fluid dynamics (CFD) tools including both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), a detailed and accurate experimental study of comer stall in a linear compressor cascade has been carried out. Data are taken at a Reynolds number of 382 000 based on blade chord and inlet velocity. At first, inlet flow boundary layer is surveyed using hot-wire anemometry. Then in order to investigate the effects of incidence, measurements are acquired at five incidences, including static pressures on both blade and endwall sur- faces measured by pressure taps and the total pressure losses of outlet flow measured by a five-hole pressure probe. The maxi- mum losses as well as the extent of losses of the comer stall are presented as a function of the investigated incidences.展开更多
Glioblastoma multiforme (GBM) is the most common adult primary tumor of the cen- tral nervous system. The current standard of care for glioblastoma patients involves a combination of surgery, radiotherapy and chemot...Glioblastoma multiforme (GBM) is the most common adult primary tumor of the cen- tral nervous system. The current standard of care for glioblastoma patients involves a combination of surgery, radiotherapy and chemotherapy with the alkylating agent temozolomide. Several mech- anisms underlying the inherent and acquired temozolomide resistance have been identified and con- tribute to treatment failure. Early identification of temozolomide-resistant GBM patients and improvement of the therapeutic strategies available to treat this malignancy are of uttermost impor- tance. This review initially looks at the molecular pathways underlying GBM formation and devel- opment with a particular emphasis placed on recent therapeutic advances made in the field. Our focus will next be directed toward the molecular mechanisms modulating temozolomide resistance in GBM patients and the strategies envisioned to circumvent this resistance. Finallyl we highlight the diagnostic and prognostic value of metabolomics in cancers and assess its potential usefulness in improving the current standard of care for GBM patients.展开更多
This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorith...This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver. The design procedur6 has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.展开更多
A new method of modifying the conventional k-w turbulence model for comer separation is proposed in this paper. The production term in the w equation is modified using kinematic vorticity considering fluid rotation an...A new method of modifying the conventional k-w turbulence model for comer separation is proposed in this paper. The production term in the w equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions. The corner separation flow in linear compressor cascades is calculated using the original k-w model, the modified k-w model and the Reynolds stress model (RSM). The numerical results of the modified model are compared with the available experimental data, as well as the corresponding results of the original k-w model and RSM. In terms of accuracy, the modified model, which significantly improves the performance of the original k-w model for predicting comer separation, is quite competitive with the RSM. However, the modified model, which has considerably lower computational cost is more robust than the RSM.展开更多
Panicle exsertion is one of the crucial agronomic traits in rice(Oryza sativa).Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production.Gibberellin(GA)plays important roles...Panicle exsertion is one of the crucial agronomic traits in rice(Oryza sativa).Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production.Gibberellin(GA)plays important roles in regulating panicle exsertion.However,the underlying mechanism and the relative regulatory network remain elusive.Here,we characterized the oswrky78 mutant showing severe panicle enclosure,and found that the defect of oswrky78 is caused by decreased bioactive GA contents.Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism.Moreover,we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase(MAPK)kinase OsMAPK6,and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function.Taken together,these results not only reveal the critical function of OsWRKY78,but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.展开更多
DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the out...DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the output signal and harms the circuit’s performance significantly.In the traditional DNA circuits,the gate complex is a duplex structure.There are insufficient energy barriers to prevent spontaneous detachment of strands,resulting in a leak prone.Herein,we have developed triplex-structure based DNA circuit with ultra-low leakage and high signal-to-noise ratio(SNR).The triplex structure improves the stability in the absence of input.At the same time,the driving force of the strand displacement cascades reduces the influence of the triplex structure on the desired reaction.The SNR of the DNA circuit was increased to 695,while the desired reaction rate remained 90%of the conventional translator circuit.The triplex-structure mediated leakage prevention strategy was further tested at different temperatures and in DNA translator and seesaw circuits.We also constructed modular basic logic gates with a high efficiency and low leakage.On this basis,we further constructed triplex-structure based tertiary DNA logic circuits,and the SNR reached 295,which,to the best of our knowledge,was among the highest of the field.We believe that our scheme provides a novel,valid,and general tool for reducing leakages,and we anticipate that it will be widely adopted in DNA nanotechnology.展开更多
基金National Natural Science Foundation of China(50976010)"111" Project (B08009)
文摘In order to gain a better knowledge of the mechanisms and to calibrate computational fluid dynamics (CFD) tools including both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), a detailed and accurate experimental study of comer stall in a linear compressor cascade has been carried out. Data are taken at a Reynolds number of 382 000 based on blade chord and inlet velocity. At first, inlet flow boundary layer is surveyed using hot-wire anemometry. Then in order to investigate the effects of incidence, measurements are acquired at five incidences, including static pressures on both blade and endwall sur- faces measured by pressure taps and the total pressure losses of outlet flow measured by a five-hole pressure probe. The maxi- mum losses as well as the extent of losses of the comer stall are presented as a function of the investigated incidences.
基金the Beatrice Hunter Cancer Research Institutethe Brain Tumour Foundation of Canada
文摘Glioblastoma multiforme (GBM) is the most common adult primary tumor of the cen- tral nervous system. The current standard of care for glioblastoma patients involves a combination of surgery, radiotherapy and chemotherapy with the alkylating agent temozolomide. Several mech- anisms underlying the inherent and acquired temozolomide resistance have been identified and con- tribute to treatment failure. Early identification of temozolomide-resistant GBM patients and improvement of the therapeutic strategies available to treat this malignancy are of uttermost impor- tance. This review initially looks at the molecular pathways underlying GBM formation and devel- opment with a particular emphasis placed on recent therapeutic advances made in the field. Our focus will next be directed toward the molecular mechanisms modulating temozolomide resistance in GBM patients and the strategies envisioned to circumvent this resistance. Finallyl we highlight the diagnostic and prognostic value of metabolomics in cancers and assess its potential usefulness in improving the current standard of care for GBM patients.
文摘This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver. The design procedur6 has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51376001, 51420105008, 11572025 & 51136003)the National Basic Research Program of China (“973” Project) (Grant No. 2012CB720205 & 2014CB046405)+2 种基金the Beijing Higher Education Young Elite Teacher Projectthe Fundamental Research Funds for the Central Universitiesthe Innovation Foundation of BUAA for Ph D Graduates
文摘A new method of modifying the conventional k-w turbulence model for comer separation is proposed in this paper. The production term in the w equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions. The corner separation flow in linear compressor cascades is calculated using the original k-w model, the modified k-w model and the Reynolds stress model (RSM). The numerical results of the modified model are compared with the available experimental data, as well as the corresponding results of the original k-w model and RSM. In terms of accuracy, the modified model, which significantly improves the performance of the original k-w model for predicting comer separation, is quite competitive with the RSM. However, the modified model, which has considerably lower computational cost is more robust than the RSM.
基金supported by the National Natural Science Foundation of China(Grant No.31671653,31801017)Heilongjiang Key Research and Development Program(Grant No.2022ZX02B03)+2 种基金National Natural Science Foundation of China-Heilongjiang Joint Fund(Grant No.U23A20193)Youth Innovation Promotion Association Chinese Academy of Sciences(Grant No.2021229)Young Scientist Group Project of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(Grant No.2023QNXZ02)。
文摘Panicle exsertion is one of the crucial agronomic traits in rice(Oryza sativa).Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production.Gibberellin(GA)plays important roles in regulating panicle exsertion.However,the underlying mechanism and the relative regulatory network remain elusive.Here,we characterized the oswrky78 mutant showing severe panicle enclosure,and found that the defect of oswrky78 is caused by decreased bioactive GA contents.Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism.Moreover,we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase(MAPK)kinase OsMAPK6,and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function.Taken together,these results not only reveal the critical function of OsWRKY78,but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
基金the National Natural Science Foundation of China(No.81871732)the National Key Research and Development Program of China(No.2021YFC2701402)+4 种基金the Open Research Fund of State Key Laboratory of Bioelectronics,southeast University(No.Sklb2021-k06)the Open Foundation of NHC Key Laboratory of Birth Defect for Research and Prevention(Hunan Provincial Maternal and Child Health Care Hospital)(No.KF2020007)the Open Foundation of Translational Medicine National Science and Technology Infrastructure(Shanghai)(No.TMSK-2021-141)the Open Fund from Key Laboratory of Cellular Physiology(Shanxi Medical University)Ministry of Education,China(No.CPOF202103).
文摘DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the output signal and harms the circuit’s performance significantly.In the traditional DNA circuits,the gate complex is a duplex structure.There are insufficient energy barriers to prevent spontaneous detachment of strands,resulting in a leak prone.Herein,we have developed triplex-structure based DNA circuit with ultra-low leakage and high signal-to-noise ratio(SNR).The triplex structure improves the stability in the absence of input.At the same time,the driving force of the strand displacement cascades reduces the influence of the triplex structure on the desired reaction.The SNR of the DNA circuit was increased to 695,while the desired reaction rate remained 90%of the conventional translator circuit.The triplex-structure mediated leakage prevention strategy was further tested at different temperatures and in DNA translator and seesaw circuits.We also constructed modular basic logic gates with a high efficiency and low leakage.On this basis,we further constructed triplex-structure based tertiary DNA logic circuits,and the SNR reached 295,which,to the best of our knowledge,was among the highest of the field.We believe that our scheme provides a novel,valid,and general tool for reducing leakages,and we anticipate that it will be widely adopted in DNA nanotechnology.