A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhi...A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.展开更多
By means of the numerical solution of time-dependent Schr6dinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, id...By means of the numerical solution of time-dependent Schr6dinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by ka times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.展开更多
Wide bandgap semiconductors play more and more important roles in both scientific researches and industrial applications.The unique wide bandgap properties provide a platform for flexible functional design for crystal...Wide bandgap semiconductors play more and more important roles in both scientific researches and industrial applications.The unique wide bandgap properties provide a platform for flexible functional design for crystal growth,defect engineering,interface engineering,and device construction.Meanwhile,the underlying physical展开更多
An all optical method is demonstrated for measuring the carrier-envelope phase (CEP) of few-cycle laser pulses. It is found that, in the few-cycle regime, the high harmonic spectrum generated from asymmetric molecul...An all optical method is demonstrated for measuring the carrier-envelope phase (CEP) of few-cycle laser pulses. It is found that, in the few-cycle regime, the high harmonic spectrum generated from asymmetric molecules shows several half-cycle cutoffs that change their positions as the CEP varies. Such half-cycle cutoffs represent the fingerprint of different quantum trajectories and the waveform of the driving pulse. In this case, the CEP can be accurately measured from the half-cycle cutoffs.展开更多
In this paper the phase-dependent features of ultrashort laser pulse resonant propagation in a two-level dipolar molecule are demonstrated by solving full Maxwell-Bloch equations. The electronic properties of dipolar ...In this paper the phase-dependent features of ultrashort laser pulse resonant propagation in a two-level dipolar molecule are demonstrated by solving full Maxwell-Bloch equations. The electronic properties of dipolar molecule 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenylvinyl] pyridine (DBASVP) molecule, one-dimensional asymmetric organic molecule, is calculated by density functional theory at ab initio level. The numerical results show that the carrier propagation and the spectrum evolution of the pulse are sensitive to its initial phase and the phase sensitivity is more obvious for larger area pulse. The phase-dependent feature is more evident in dipolar molecule because the permanent dipole moment makes the nonlinear effects stronger.展开更多
The spatial distribution in high-order harmonic generation(HHG) from the asymmetric diatomic molecule He H^(2+) is investigated by numerically solving the non-Born–Oppenheimer time-dependent Schr?dinger equatio...The spatial distribution in high-order harmonic generation(HHG) from the asymmetric diatomic molecule He H^(2+) is investigated by numerically solving the non-Born–Oppenheimer time-dependent Schr?dinger equation(TDSE). The spatial distribution of the HHG spectra shows that there is little contribution in HHG around the geometric center of two nuclei(z = 1.17 a.u.) and the equilibrium internuclear position of the H nucleus(z = 3.11 a.u.). We demonstrate the carrier envelope phase(CEP) effect on the spatial distribution of HHG in a few-cycle laser pulse. The HHG process is investigated by the time evolution of the electronic density distribution. The time–frequency analysis of HHG from two nuclei in HeH^(2+) is presented to further explain the underlying physical mechanism.展开更多
基金supported by the National Natural Science Foundation of China(No.61275103)the Natural Science Foundation of Shanghai(No.18ZR1413600)
文摘A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.
基金Supported by the National Science Foundation of China under Grant No 60408008, the Natural Science Key Foundation of Shanghai under Grant No 04JC14036, and the Shanghai Rising-Star Programme.
文摘By means of the numerical solution of time-dependent Schr6dinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by ka times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.
基金partly supported by the National Key Technology R&D Program of the Ministry of Science and Technology(2012BAC23B03)+2 种基金 National Key Basic Research Program of China(2013CB922401) the National Natural Science Foundation of China(11074298,60878020)
文摘Wide bandgap semiconductors play more and more important roles in both scientific researches and industrial applications.The unique wide bandgap properties provide a platform for flexible functional design for crystal growth,defect engineering,interface engineering,and device construction.Meanwhile,the underlying physical
基金supported by the Key Foundation of the Ministry of Education of China(Grant No.211117)the Foundation of Hubei Co-innovation Center forUtilization of Biomass Waste,China(Grant No.XTCX004)
文摘An all optical method is demonstrated for measuring the carrier-envelope phase (CEP) of few-cycle laser pulses. It is found that, in the few-cycle regime, the high harmonic spectrum generated from asymmetric molecules shows several half-cycle cutoffs that change their positions as the CEP varies. Such half-cycle cutoffs represent the fingerprint of different quantum trajectories and the waveform of the driving pulse. In this case, the CEP can be accurately measured from the half-cycle cutoffs.
基金Froject supported by the Shandong Natural Science Foundation (Grant No Y2004A08), University Doctoral Subject Special Science and Technology Foundation (Grant No 20040445001) and the Key Laboratory for High Intensity 0ptics of Shanghai Institute of 0ptics and Fine Mechanics, Chinese Academy of Sciences.
文摘In this paper the phase-dependent features of ultrashort laser pulse resonant propagation in a two-level dipolar molecule are demonstrated by solving full Maxwell-Bloch equations. The electronic properties of dipolar molecule 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenylvinyl] pyridine (DBASVP) molecule, one-dimensional asymmetric organic molecule, is calculated by density functional theory at ab initio level. The numerical results show that the carrier propagation and the spectrum evolution of the pulse are sensitive to its initial phase and the phase sensitivity is more obvious for larger area pulse. The phase-dependent feature is more evident in dipolar molecule because the permanent dipole moment makes the nonlinear effects stronger.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11271158,11574117,and 61575077)
文摘The spatial distribution in high-order harmonic generation(HHG) from the asymmetric diatomic molecule He H^(2+) is investigated by numerically solving the non-Born–Oppenheimer time-dependent Schr?dinger equation(TDSE). The spatial distribution of the HHG spectra shows that there is little contribution in HHG around the geometric center of two nuclei(z = 1.17 a.u.) and the equilibrium internuclear position of the H nucleus(z = 3.11 a.u.). We demonstrate the carrier envelope phase(CEP) effect on the spatial distribution of HHG in a few-cycle laser pulse. The HHG process is investigated by the time evolution of the electronic density distribution. The time–frequency analysis of HHG from two nuclei in HeH^(2+) is presented to further explain the underlying physical mechanism.