This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A library of P. carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using erro...This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A library of P. carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using error-prone PCR. After screening, two mutants of H260L and D84A/H260L showed enhanced thermal stability than the wild-type predecessor (WT). Site-directed mutagenesis demonstrated that only amino acid residue at Position 260 plays an important role in the thermostability of P. carrageenovora arylsulfatase. Thermal inactivation analysis showed that the half-life (t1/2) values at 55°C for H260L, H260I, H260Q, H260F and H260R were 40.6, 48.4, 30.9, 29.1 and 34.5 min, respectively, while that of WT was 9.1 min. Structure modeling demonstrated that the additional hydrogen bonds and/or optimization of surface charge-charge interactions could be responsible for the increased thermostability imparted by H260L, H260I, H260Q, H260F and H260R.展开更多
基金The National Natural Science Foundation of China under contract No.31401632the Program for New Century Excellent Talents in Fujian Province University,China under contract No.B15139
文摘This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A library of P. carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using error-prone PCR. After screening, two mutants of H260L and D84A/H260L showed enhanced thermal stability than the wild-type predecessor (WT). Site-directed mutagenesis demonstrated that only amino acid residue at Position 260 plays an important role in the thermostability of P. carrageenovora arylsulfatase. Thermal inactivation analysis showed that the half-life (t1/2) values at 55°C for H260L, H260I, H260Q, H260F and H260R were 40.6, 48.4, 30.9, 29.1 and 34.5 min, respectively, while that of WT was 9.1 min. Structure modeling demonstrated that the additional hydrogen bonds and/or optimization of surface charge-charge interactions could be responsible for the increased thermostability imparted by H260L, H260I, H260Q, H260F and H260R.