N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was...N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was confirmed by ATR-FTIR,XPS and water contact angle measurements.Through the experiments with plateletadhesion and protein adhesion assay in vitro,the two materials studied,including poly-DMMCA gel,all show excellentnonthrombogenicity.This confirms once again that the zwitterionic molecular structure on the surfaces of materials isessential for improving their nonthrombogenicity and biocompatibility.展开更多
Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, t...Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, treat fatigue and depression along with its significance in accurate age estimation in the field of forensic science and is an important constituent of ‘aspartame’, the low calorie sweetener. In order to study the intermolecular interactions in the prepolymerization mixture between the monomer and the template (LAA)/non-template (DAA), a computational approach was developed. It was based on the binding energy of the complex between the template and functional monomer. The results demonstrate that electrostatic in-teractions primarily guide the imprinting protocol. The MIP was able to selectively and specifically take up LAA from aqueous solution, human blood serum and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique to detect the amino acid, LAA in the presence of various interfer-rants, in different kinds of matrices is presented.展开更多
以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization,SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA...以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization,SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA)。通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相。考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响。结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式。流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征。使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法。展开更多
Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacr...Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacrylate) (PCL-PCBMA) containing zwitterion and polyester segments, was synthesized through ATRP technique. The chemical structure, composition,and molecular weight of the synthesized copolymer were characterized by ~HNMR and GPC. The polymer was further electrospun into fibrous film which has been characterized by SEM, XPS, water uptake test, and MTT cell culture assay. All these results indicate that this kind of copolymer is a suitable candidate for the application in vascular tissue engineering.展开更多
Rapid and simultaneous in situ detection of multi-components is extremely crucial for the real-time monitoring of nutrients in fruits.Herein,a facile and user-friendly poly(carboxybetaine methacrylate)-coated paper-ba...Rapid and simultaneous in situ detection of multi-components is extremely crucial for the real-time monitoring of nutrients in fruits.Herein,a facile and user-friendly poly(carboxybetaine methacrylate)-coated paper-based microfluidic device(pCBMA-μPAD)has been exploited to synchronously identify and semi-quantify vitamin C.glucose,sucro se and fructose in fruits.The pCBMA was successfully grafted from the surface of paper sensor using a co nvenient and robust method,which was confirmed by Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectrometry(XPS).The superior hydrophilicity and ultra-low fouling of pCBMA endowed the pCBMA-μPAD with remarkably rapid response(3 min),high sensitivity,good linear relationship and low detection limit(LOD)(vitamin C:y=33.809+5.175 x,R^2=0.993,LOD=0.179 mmol/L;glucose:y=-0.113+30.0661 g(x),R^2=0.988,LOD=0.095 mmol/L;sucrose:y--5.334+34.858 lg(x),R^2=0.996,LOD=0.097 mmol/L;fructose:y=4.996+23.325 lg(x),R^2=0.994,LOD=0.140 mmol/L).Furthermore,satisfactory results were yielded in the detection of these nutrients in 9 fruits,which were much agreed well with those obtained by spectrophotometry.Such a portable and versatile pCBMA-μPAD will pro foundly shape the future of food analysis,especially for the assessment of food quality and nutrition in the process of agricultural production and marketing.展开更多
基金This work was financially supported by the Special Funds for Major State Basic Research Projects of China(G1999064705).
文摘N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was confirmed by ATR-FTIR,XPS and water contact angle measurements.Through the experiments with plateletadhesion and protein adhesion assay in vitro,the two materials studied,including poly-DMMCA gel,all show excellentnonthrombogenicity.This confirms once again that the zwitterionic molecular structure on the surfaces of materials isessential for improving their nonthrombogenicity and biocompatibility.
文摘Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, treat fatigue and depression along with its significance in accurate age estimation in the field of forensic science and is an important constituent of ‘aspartame’, the low calorie sweetener. In order to study the intermolecular interactions in the prepolymerization mixture between the monomer and the template (LAA)/non-template (DAA), a computational approach was developed. It was based on the binding energy of the complex between the template and functional monomer. The results demonstrate that electrostatic in-teractions primarily guide the imprinting protocol. The MIP was able to selectively and specifically take up LAA from aqueous solution, human blood serum and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique to detect the amino acid, LAA in the presence of various interfer-rants, in different kinds of matrices is presented.
文摘以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization,SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA)。通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相。考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响。结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式。流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征。使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法。
文摘Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacrylate) (PCL-PCBMA) containing zwitterion and polyester segments, was synthesized through ATRP technique. The chemical structure, composition,and molecular weight of the synthesized copolymer were characterized by ~HNMR and GPC. The polymer was further electrospun into fibrous film which has been characterized by SEM, XPS, water uptake test, and MTT cell culture assay. All these results indicate that this kind of copolymer is a suitable candidate for the application in vascular tissue engineering.
基金financially supported by the National Natural Science Foundation of China(Nos.31701678,31801638)the Key Project of Shanghai Agriculture Prosperity through Science and Technology(No.2019-02-08-00-15-F01147)+1 种基金the Key Science and Technology Project of Henan(No.172102310586)China Post-Doctoral Science Foundation(No.2018T110338)。
文摘Rapid and simultaneous in situ detection of multi-components is extremely crucial for the real-time monitoring of nutrients in fruits.Herein,a facile and user-friendly poly(carboxybetaine methacrylate)-coated paper-based microfluidic device(pCBMA-μPAD)has been exploited to synchronously identify and semi-quantify vitamin C.glucose,sucro se and fructose in fruits.The pCBMA was successfully grafted from the surface of paper sensor using a co nvenient and robust method,which was confirmed by Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectrometry(XPS).The superior hydrophilicity and ultra-low fouling of pCBMA endowed the pCBMA-μPAD with remarkably rapid response(3 min),high sensitivity,good linear relationship and low detection limit(LOD)(vitamin C:y=33.809+5.175 x,R^2=0.993,LOD=0.179 mmol/L;glucose:y=-0.113+30.0661 g(x),R^2=0.988,LOD=0.095 mmol/L;sucrose:y--5.334+34.858 lg(x),R^2=0.996,LOD=0.097 mmol/L;fructose:y=4.996+23.325 lg(x),R^2=0.994,LOD=0.140 mmol/L).Furthermore,satisfactory results were yielded in the detection of these nutrients in 9 fruits,which were much agreed well with those obtained by spectrophotometry.Such a portable and versatile pCBMA-μPAD will pro foundly shape the future of food analysis,especially for the assessment of food quality and nutrition in the process of agricultural production and marketing.