Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative c...Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative carbonylation of methanol to dimethyl carbonate(DMC). The catalytic performance was significantly influenced by reduction conditions including temperature and time. With the similar selectivity of DMC, the space time yield(STY) under optimal reduction conditions reached up to 408 mg g^-1h^-1, which is superior to conventional methods such as thermolysis and solvothermal reduction. Based on the characterization results of XRD, TEM and XPS, the good copper dispersion and high Cu^+ content obtained by vapor-phase methanol reduction were mainly responsible for the high catalytic activity.展开更多
基金Financial support from the National Natural Science Foundation of China (Nos. 21325626, 21406120, U1510203)the Postdoctoral Science Foundation of China (Nos. 2014M560181, 2015T80214)
文摘Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative carbonylation of methanol to dimethyl carbonate(DMC). The catalytic performance was significantly influenced by reduction conditions including temperature and time. With the similar selectivity of DMC, the space time yield(STY) under optimal reduction conditions reached up to 408 mg g^-1h^-1, which is superior to conventional methods such as thermolysis and solvothermal reduction. Based on the characterization results of XRD, TEM and XPS, the good copper dispersion and high Cu^+ content obtained by vapor-phase methanol reduction were mainly responsible for the high catalytic activity.