As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the lase...As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.展开更多
Carbon nanotubes were modified by FeSO 4 - H 2 O 2 system,iron hydroxides were adsorbed on the wall of carbon nanotubes simulta neously.These precursors were treated at723K for2h under hydrogen,nitrogen and a ir atmo ...Carbon nanotubes were modified by FeSO 4 - H 2 O 2 system,iron hydroxides were adsorbed on the wall of carbon nanotubes simulta neously.These precursors were treated at723K for2h under hydrogen,nitrogen and a ir atmo - sphere to prepare carbon nanotubes supported γ- Fe 2 O 3 catalyst,γ- Fe 2 O 3 and α- Fe 2 O 3 compound catalyst and amorphous Fe 2 O 3 catalyst,respectively.This is green method to prepare high Fe 2 O 3 loading( ≥ 50%)abstract:catalyst without adding other cation.The different structures Fe 2 O 3 catalysts can be synthesized by controlling the condi - tion of thermal treatment to content active phase requirements for different catalytic reactions.The paper presents a new method to prepare carbon nanotubes supported catalysts.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
XPS shake-up satellite peaks (XPS shake-up) and HMO calculations of some conjugatedring carbon-hydrogen compounds have been reported. The shake-up spacing and probabilityusing HMO calculation accord with XPS experimen...XPS shake-up satellite peaks (XPS shake-up) and HMO calculations of some conjugatedring carbon-hydrogen compounds have been reported. The shake-up spacing and probabilityusing HMO calculation accord with XPS experimental results. The relation between shake-up transition of the excited atom and its chemical activity, namely, the order of its atomicfree valence, has been established.展开更多
Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use...Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we also present in this work a preliminary study on the carbon-hydrogen ratio and the attenuation length of the samples.展开更多
A redox‐neutral avenue to access isoquinolines has been realized by a Co(III)‐catalyzed C–H activa‐tion process. Starting from readily available N‐sulfinyl imine substrates and alkynes, the reaction occurred vi...A redox‐neutral avenue to access isoquinolines has been realized by a Co(III)‐catalyzed C–H activa‐tion process. Starting from readily available N‐sulfinyl imine substrates and alkynes, the reaction occurred via N–S cleavage with broad substrate scope and functional group compatibility in the presence of cost‐effective cobalt catalysts.展开更多
A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly u...A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly under mild conditions, and provided a practical approach for the synthesis of a wide range of 5‐alkynyl‐2‐pyrrolidinones in moderate to good yields (45%–76%).展开更多
基金the National Key R&D Program of China(No.2016YFA0401100)National Natural Science Foundation of China(Nos.12175154,11875092,and 12005149)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Nos.2019010801001 and 2019020801001)The EPOCH code is used under UK EPSRC contract(EP/G055165/1 and EP/G056803/1).
文摘As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.
文摘Carbon nanotubes were modified by FeSO 4 - H 2 O 2 system,iron hydroxides were adsorbed on the wall of carbon nanotubes simulta neously.These precursors were treated at723K for2h under hydrogen,nitrogen and a ir atmo - sphere to prepare carbon nanotubes supported γ- Fe 2 O 3 catalyst,γ- Fe 2 O 3 and α- Fe 2 O 3 compound catalyst and amorphous Fe 2 O 3 catalyst,respectively.This is green method to prepare high Fe 2 O 3 loading( ≥ 50%)abstract:catalyst without adding other cation.The different structures Fe 2 O 3 catalysts can be synthesized by controlling the condi - tion of thermal treatment to content active phase requirements for different catalytic reactions.The paper presents a new method to prepare carbon nanotubes supported catalysts.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
文摘XPS shake-up satellite peaks (XPS shake-up) and HMO calculations of some conjugatedring carbon-hydrogen compounds have been reported. The shake-up spacing and probabilityusing HMO calculation accord with XPS experimental results. The relation between shake-up transition of the excited atom and its chemical activity, namely, the order of its atomicfree valence, has been established.
基金Supported by China Ministry of Science and Technology(2013CB834300)
文摘Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we also present in this work a preliminary study on the carbon-hydrogen ratio and the attenuation length of the samples.
基金supported by the Dalian Institute of Chemical Physics,Chinese Academy of Sciencesthe National Natural Science Foundation of China (21272231)~~
文摘A redox‐neutral avenue to access isoquinolines has been realized by a Co(III)‐catalyzed C–H activa‐tion process. Starting from readily available N‐sulfinyl imine substrates and alkynes, the reaction occurred via N–S cleavage with broad substrate scope and functional group compatibility in the presence of cost‐effective cobalt catalysts.
基金supported by the National Natural Science Foundation of China(21222203,21172226,21133011)
文摘A novel catalytic reaction has been developed for the nucleophilic addition of terminal alkynes toα,β‐unsaturated‐γ‐lactams via a cyclic N‐acyliminium ion intermediate. This simple reaction pro‐ceeds rapidly under mild conditions, and provided a practical approach for the synthesis of a wide range of 5‐alkynyl‐2‐pyrrolidinones in moderate to good yields (45%–76%).