In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3...Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.展开更多
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
基金supported by the National Natural Science Foundation of China(21036009 and 20976203)the Fundamental Research Funds for the Central Universities
文摘Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.