考察了1.9 k W质子交换膜燃料电池电堆在低氢气化学计量比,电流快速连续变载条件下的耐久性。在244 h工况运行后,在电流密度为800 m A×cm-2的条件下,电堆单电池平均电压从0.616 V下降到0.464 V,衰退率为0.623m V×h^(-1),由此...考察了1.9 k W质子交换膜燃料电池电堆在低氢气化学计量比,电流快速连续变载条件下的耐久性。在244 h工况运行后,在电流密度为800 m A×cm-2的条件下,电堆单电池平均电压从0.616 V下降到0.464 V,衰退率为0.623m V×h^(-1),由此可见电堆出现快速性能衰退。在实验过程中,车载工况使得电堆阴阳极进气压力以及进气温度出现明显波动,从而导致膜电极组件(MEA)遭受周期性的机械应力与热应力冲击。此外,在氢气化学计量比为1.05条件下,电流快速连续加载会导致供气系统响应迟缓,气体供应不及时,甚至导致燃料局部供应不足,这可加剧载体碳腐蚀。极化曲线、循环伏安法(CV)测试、电化学交流阻抗谱(EIS)表征发现,电化学活性面积的下降引起了电堆的快速、不可逆的衰退。扫描电子显微镜(SEM)、透射电子显微镜(TEM)表征显示阳极催化层厚度变薄,阴阳极催化剂颗粒出现不同程度的长大。可见,在车载工况下,由于低氢气计量比引起的局部缺氢,加速了碳载体腐蚀,并使Pt颗粒的团聚以及流失,影响燃料电池性能。展开更多
The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize th...The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.展开更多
The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitize...The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon.展开更多
文摘考察了1.9 k W质子交换膜燃料电池电堆在低氢气化学计量比,电流快速连续变载条件下的耐久性。在244 h工况运行后,在电流密度为800 m A×cm-2的条件下,电堆单电池平均电压从0.616 V下降到0.464 V,衰退率为0.623m V×h^(-1),由此可见电堆出现快速性能衰退。在实验过程中,车载工况使得电堆阴阳极进气压力以及进气温度出现明显波动,从而导致膜电极组件(MEA)遭受周期性的机械应力与热应力冲击。此外,在氢气化学计量比为1.05条件下,电流快速连续加载会导致供气系统响应迟缓,气体供应不及时,甚至导致燃料局部供应不足,这可加剧载体碳腐蚀。极化曲线、循环伏安法(CV)测试、电化学交流阻抗谱(EIS)表征发现,电化学活性面积的下降引起了电堆的快速、不可逆的衰退。扫描电子显微镜(SEM)、透射电子显微镜(TEM)表征显示阳极催化层厚度变薄,阴阳极催化剂颗粒出现不同程度的长大。可见,在车载工况下,由于低氢气计量比引起的局部缺氢,加速了碳载体腐蚀,并使Pt颗粒的团聚以及流失,影响燃料电池性能。
文摘The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.
文摘The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon.