Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for ...Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for synthetic applications in chemical and fuel industries-through carboxylation and reduction reactions-is the subject of this review.Current statute of the heterogeneously catalyzed hydrogenation,as well as the photocatalytic and electrocatalytic activations of conversion of CO_(2) to value-added chemicals is overviewed.Envisaging CO_(2) as a viable alternative to natural gas and oil as carbon resource for the chemical supply chain,three stages of development;namely,(i)existing mature technologies(such as urea production),(ii)emerging technologies(such as formic acid or other single carbon(C1)chemicals manufacture)and(iii)innovative explorations(such as electrocatalytic ethylene production)have been identified and highlighted.A unique aspect of this review is the exploitations of reactions of CO2 ewhich stems from existing petrochemical plants-with the commodity petrochemicals(such as,methanol,ethylene and ethylene oxide)produced at the same or nearby complex in order to obtain value-added products while contributing also to CO_(2) fixation simultaneously.Exemplifying worldwide ethylene oxide facilities,it is recognized that they produce about 3 million tons of CO2 annually.Such a CO_(2) resource,which is already separated in pure form as a requirement of the process,should best be converted to a value-added chemical there avoiding current practice of discharging to the atmosphere.The potential utilization of CO_(2),captured at power plants,should also been taken into consideration for sustainability.This CO_(2) source,which is potentially a raw material for the chemical industry,will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects.Products resulting from carboxylation reactions are obvious conversions.In addition,provided that enough s展开更多
Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,...Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,desirable electrical conductivity,controllable porosity,tunable geometric structure,and excellent thermal/chemical stability.Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs,such as large specific surface area and porous structure and,in contrast,realize in situ doping with heteroatoms(eg,N,S,P,and B).Moreover,by selecting appropriate MOF precursors,the composition and morphology of the carbon products can be easily adjusted.These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials,which to date have been applied in the fields of energy storage and conversion systems.In this review,we summarize the latest advances in MOF-derived carbon materials for energy storage applications.We first introduce the compositions,structures,and synthesis methods of MOF-derived carbon materials,and then discuss their applications and potentials in energy storage systems,including rechargeable lithium/sodium-ion batteries,lithium-sulfur batteries,supercapacitors,and so forth,in detail.Finally,we put forward our own perspectives on the future development of MOF-derived carbon materials.展开更多
A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by t...A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.展开更多
Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development...Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development of photothermal conversion and the classification of absorbers for solar vapor generation systems are presented, especially in recent devel- opment of carbon nanocomposites (carbon nanotubes and graphene) as solar vapor generation devices. Combined with recent progresses and achievements in this field, we discuss the challenges and opportunities for photothermal conversion based on carbon nanocomposites as well as their promising applications.展开更多
Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation...Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future.展开更多
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo...Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.展开更多
基金Authors gratefully acknowledge Hasan Arslan,Senior Process Consultant,PTTGC America,for the hindsight provided for matured and developing petrochemical processes.
文摘Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for synthetic applications in chemical and fuel industries-through carboxylation and reduction reactions-is the subject of this review.Current statute of the heterogeneously catalyzed hydrogenation,as well as the photocatalytic and electrocatalytic activations of conversion of CO_(2) to value-added chemicals is overviewed.Envisaging CO_(2) as a viable alternative to natural gas and oil as carbon resource for the chemical supply chain,three stages of development;namely,(i)existing mature technologies(such as urea production),(ii)emerging technologies(such as formic acid or other single carbon(C1)chemicals manufacture)and(iii)innovative explorations(such as electrocatalytic ethylene production)have been identified and highlighted.A unique aspect of this review is the exploitations of reactions of CO2 ewhich stems from existing petrochemical plants-with the commodity petrochemicals(such as,methanol,ethylene and ethylene oxide)produced at the same or nearby complex in order to obtain value-added products while contributing also to CO_(2) fixation simultaneously.Exemplifying worldwide ethylene oxide facilities,it is recognized that they produce about 3 million tons of CO2 annually.Such a CO_(2) resource,which is already separated in pure form as a requirement of the process,should best be converted to a value-added chemical there avoiding current practice of discharging to the atmosphere.The potential utilization of CO_(2),captured at power plants,should also been taken into consideration for sustainability.This CO_(2) source,which is potentially a raw material for the chemical industry,will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects.Products resulting from carboxylation reactions are obvious conversions.In addition,provided that enough s
基金This study acknowledges the supports by the Shenzhen Science and Technology Innovation Commission under Grant JCYJ20180507181806316the City University of Hong Kong under project Fundamental Investigation of Phase Transformative Materials for Energy Application(Project No.9610399)the Shenzhen Research Institute,City University of Hong Kong.
文摘Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,desirable electrical conductivity,controllable porosity,tunable geometric structure,and excellent thermal/chemical stability.Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs,such as large specific surface area and porous structure and,in contrast,realize in situ doping with heteroatoms(eg,N,S,P,and B).Moreover,by selecting appropriate MOF precursors,the composition and morphology of the carbon products can be easily adjusted.These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials,which to date have been applied in the fields of energy storage and conversion systems.In this review,we summarize the latest advances in MOF-derived carbon materials for energy storage applications.We first introduce the compositions,structures,and synthesis methods of MOF-derived carbon materials,and then discuss their applications and potentials in energy storage systems,including rechargeable lithium/sodium-ion batteries,lithium-sulfur batteries,supercapacitors,and so forth,in detail.Finally,we put forward our own perspectives on the future development of MOF-derived carbon materials.
基金supported by the National Science Foundation of China(No.11204298,61205025,61274126 and 61306081)the Jilin Province Science and Technology Research Project(No.20140101060JC,20150519003JH and 20130522142JH)the Outstanding Young Scientist Program of CAS.
文摘A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.
基金supported by the National Key R&D Program of China (2016YFA0200200)the Key Laboratory of Textile Fiber & Product (Wuhan Textile University)Ministry of Education (FZXW006)
文摘Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development of photothermal conversion and the classification of absorbers for solar vapor generation systems are presented, especially in recent devel- opment of carbon nanocomposites (carbon nanotubes and graphene) as solar vapor generation devices. Combined with recent progresses and achievements in this field, we discuss the challenges and opportunities for photothermal conversion based on carbon nanocomposites as well as their promising applications.
基金the National Key R&D Program of China(2018YFA0209500)the National Natural Science Foundation of China(21621091 and 21975209)the Fundamental Research Funds for the Central Universities(20720190037)。
文摘Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future.
基金the National Natural Science Foun-dation of China(51836006).
文摘Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.