The process of generating descriptive captions for images has witnessed significant advancements in last years,owing to the progress in deep learning techniques.Despite significant advancements,the task of thoroughly ...The process of generating descriptive captions for images has witnessed significant advancements in last years,owing to the progress in deep learning techniques.Despite significant advancements,the task of thoroughly grasping image content and producing coherent,contextually relevant captions continues to pose a substantial challenge.In this paper,we introduce a novel multimodal method for image captioning by integrating three powerful deep learning architectures:YOLOv8(You Only Look Once)for robust object detection,EfficientNetB7 for efficient feature extraction,and Transformers for effective sequence modeling.Our proposed model combines the strengths of YOLOv8 in detecting objects,the superior feature representation capabilities of EfficientNetB7,and the contextual understanding and sequential generation abilities of Transformers.We conduct extensive experiments on standard benchmark datasets to evaluate the effectiveness of our approach,demonstrating its ability to generate informative and semantically rich captions for diverse images.The experimental results showcase the synergistic benefits of integrating YOLOv8,EfficientNetB7,and Transformers in advancing the state-of-the-art in image captioning tasks.The proposed multimodal approach has yielded impressive outcomes,generating informative and semantically rich captions for a diverse range of images.By combining the strengths of YOLOv8,EfficientNetB7,and Transformers,the model has achieved state-of-the-art results in image captioning tasks.The significance of this approach lies in its ability to address the challenging task of generating coherent and contextually relevant captions while achieving a comprehensive understanding of image content.The integration of three powerful deep learning architectures demonstrates the synergistic benefits of multimodal fusion in advancing the state-of-the-art in image captioning.Furthermore,this approach has a profound impact on the field,opening up new avenues for research in multimodal deep learning and paving the way for展开更多
Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It...Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.展开更多
Biped locomotion has excellent environment adaptability due to natural selection and evolution over hundreds of millions years. However, the biped walking stability mechanism is still not clear. In this paper, an expe...Biped locomotion has excellent environment adaptability due to natural selection and evolution over hundreds of millions years. However, the biped walking stability mechanism is still not clear. In this paper, an experimental analysis of walking stability in human walking is carried out by using a motion capture system. A new stability analysis method is proposed based on Zero Moment Point (ZMP) and Sliding Time Window (STW). The influences of ground friction coefficient, ground slope angle and contact area of support polygon on human walking stability are investigated. The experiment is carried out with 12 healthy subjects, and 53 passive reflective markers are pasted to each subject to obtain moving trajectory and to calculate lower limb joint variation during walking. Experimental results show that ground friction coefficient, ground slope angle and contact area have significant effects on the stride length, step height, gait cycle and lower limb joint angles. When walking with small stability margin, subjects modulate gait to improve the stability, such as shortening stride length, reducing step height, and increasing the gait cycle. These results provide insights into the stability mechanism of human walking, which is beneficial for locomotion control of biped robots.展开更多
Objective: The Chinese description of images combines the two directions of computer vision and natural language processing. It is a typical representative of multi-mode and cross-domain problems with artificial intel...Objective: The Chinese description of images combines the two directions of computer vision and natural language processing. It is a typical representative of multi-mode and cross-domain problems with artificial intelligence algorithms. The image Chinese description model needs to output a Chinese description for each given test picture, describe the sentence requirements to conform to the natural language habits, and point out the important information in the image, covering the main characters, scenes, actions and other content. Since the current open source datasets are mostly in English, the research on the direction of image description is mainly in English. Chinese descriptions usually have greater flexibility in syntax and lexicalization, and the challenges of algorithm implementation are also large. Therefore, only a few people have studied image descriptions, especially Chinese descriptions. Methods: This study attempts to derive a model of image description generation from the Flickr8k-cn and Flickr30k-cn datasets. At each time period of the description, the model can decide whether to rely more on images or text information. The model captures more important information from the image to improve the richness and accuracy of the Chinese description of the image. The image description data set of this study is mainly composed of Chinese description sentences. The method consists of an encoder and a decoder. The encoder is based on a convolutional neural network. The decoder is based on a long-short memory network and is composed of a multi-modal summary generation network. Results: Experiments on Flickr8k-cn and Flickr30k-cn Chinese datasets show that the proposed method is superior to the existing Chinese abstract generation model. Conclusion: The method proposed in this paper is effective, and the performance has been greatly improved on the basis of the benchmark model. Compared with the existing Chinese abstract generation model, its performance is also superior. In the next step, more visual prior i展开更多
基金funded by Researchers Supporting Project number(RSPD2024R698),King Saud University,Riyadh,Saudi Arabia.
文摘The process of generating descriptive captions for images has witnessed significant advancements in last years,owing to the progress in deep learning techniques.Despite significant advancements,the task of thoroughly grasping image content and producing coherent,contextually relevant captions continues to pose a substantial challenge.In this paper,we introduce a novel multimodal method for image captioning by integrating three powerful deep learning architectures:YOLOv8(You Only Look Once)for robust object detection,EfficientNetB7 for efficient feature extraction,and Transformers for effective sequence modeling.Our proposed model combines the strengths of YOLOv8 in detecting objects,the superior feature representation capabilities of EfficientNetB7,and the contextual understanding and sequential generation abilities of Transformers.We conduct extensive experiments on standard benchmark datasets to evaluate the effectiveness of our approach,demonstrating its ability to generate informative and semantically rich captions for diverse images.The experimental results showcase the synergistic benefits of integrating YOLOv8,EfficientNetB7,and Transformers in advancing the state-of-the-art in image captioning tasks.The proposed multimodal approach has yielded impressive outcomes,generating informative and semantically rich captions for a diverse range of images.By combining the strengths of YOLOv8,EfficientNetB7,and Transformers,the model has achieved state-of-the-art results in image captioning tasks.The significance of this approach lies in its ability to address the challenging task of generating coherent and contextually relevant captions while achieving a comprehensive understanding of image content.The integration of three powerful deep learning architectures demonstrates the synergistic benefits of multimodal fusion in advancing the state-of-the-art in image captioning.Furthermore,this approach has a profound impact on the field,opening up new avenues for research in multimodal deep learning and paving the way for
文摘Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.
基金The work was supported by National Natural Science Foundation of China (Grant Nos. 51605334, U 1713215 and 51705368), Shanghai Municipal Science and Technology Commission Project (Grant Nos. 17DZ1203405 and 18DZ1202703), and Shanghai Sailing Program (Grant No. 17YF1420200). We thank the reviewers and editors for their helpful comments on the manuscript.
文摘Biped locomotion has excellent environment adaptability due to natural selection and evolution over hundreds of millions years. However, the biped walking stability mechanism is still not clear. In this paper, an experimental analysis of walking stability in human walking is carried out by using a motion capture system. A new stability analysis method is proposed based on Zero Moment Point (ZMP) and Sliding Time Window (STW). The influences of ground friction coefficient, ground slope angle and contact area of support polygon on human walking stability are investigated. The experiment is carried out with 12 healthy subjects, and 53 passive reflective markers are pasted to each subject to obtain moving trajectory and to calculate lower limb joint variation during walking. Experimental results show that ground friction coefficient, ground slope angle and contact area have significant effects on the stride length, step height, gait cycle and lower limb joint angles. When walking with small stability margin, subjects modulate gait to improve the stability, such as shortening stride length, reducing step height, and increasing the gait cycle. These results provide insights into the stability mechanism of human walking, which is beneficial for locomotion control of biped robots.
文摘Objective: The Chinese description of images combines the two directions of computer vision and natural language processing. It is a typical representative of multi-mode and cross-domain problems with artificial intelligence algorithms. The image Chinese description model needs to output a Chinese description for each given test picture, describe the sentence requirements to conform to the natural language habits, and point out the important information in the image, covering the main characters, scenes, actions and other content. Since the current open source datasets are mostly in English, the research on the direction of image description is mainly in English. Chinese descriptions usually have greater flexibility in syntax and lexicalization, and the challenges of algorithm implementation are also large. Therefore, only a few people have studied image descriptions, especially Chinese descriptions. Methods: This study attempts to derive a model of image description generation from the Flickr8k-cn and Flickr30k-cn datasets. At each time period of the description, the model can decide whether to rely more on images or text information. The model captures more important information from the image to improve the richness and accuracy of the Chinese description of the image. The image description data set of this study is mainly composed of Chinese description sentences. The method consists of an encoder and a decoder. The encoder is based on a convolutional neural network. The decoder is based on a long-short memory network and is composed of a multi-modal summary generation network. Results: Experiments on Flickr8k-cn and Flickr30k-cn Chinese datasets show that the proposed method is superior to the existing Chinese abstract generation model. Conclusion: The method proposed in this paper is effective, and the performance has been greatly improved on the basis of the benchmark model. Compared with the existing Chinese abstract generation model, its performance is also superior. In the next step, more visual prior i