The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for m...The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for most of soil profiles and the nationwide ASWC largely remains lacking in relevant soil data in China. This work was to estimate ASWC based on physical and chemical properties and analyze the spatial distribution of ASWC in China. The pedo-transfer functions (PTFs), derived from 220 survey data of ASWC, and the empirical data of ASWC based on soil texture were applied to quantify the ASWC. GIS technology was used to develop a spatial file of ASWC in China and the spatial distribution of ASWC was also analyzed. The results showed the value of ASWC ranges from 15 × 10-2 cm3·cm-3 to 22 × 10-2 cm3·cm-3 for most soil types, and few soil types are lower than 15 × 10-2 cm3·cm-3 or higher than 22 × 10-2 cm3·cm-3. The ASWC is different according to the complex soil types and their distribution. It is higher in the east than that in the west, and the values reduce from south to north except the northeastern part of China. The "high" values of ASWC appear in southeast, northeastern mountain regions and Northeast China Plain. The relatively "high" values of ASWC appear in Sichuan basin, Huang-Huai-Hai plain and the east of Inner Mongolia. The relatively "low" values are distributed in the west and the Loess Plateau of China. The "very low" value regions are the northern Tibetan Plateau and the desertified areas in northern China. In some regions, the ASWC changes according to the complex topography and different types of soils. Though there remains precision limitation, the spatial data of ASWC derived from this study are improved on current data files of soil water retention properties for Chinese soils. This study presents basic data and analysis methods for estimation and evaluation of ASWC in China.展开更多
Objective To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. Design Multicenter, double-blind, placebo-controlled, parall... Objective To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. Design Multicenter, double-blind, placebo-controlled, parallel-group, randomized clinical trial of 216 sta- ble outpatients with HF, ejection fraction ≥ 50%, elevated N-terminal brain-type natriuretic peptide or elevat- ed invasively measured filling pressures, and reduced exercise capacity. Participants were randomized from October 2008 through February 2012 at 26 centers in North America. Follow-up was through August 30, 2012.展开更多
This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,e...This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.展开更多
基金National Natural Science Foundation of China No.43071093
文摘The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for most of soil profiles and the nationwide ASWC largely remains lacking in relevant soil data in China. This work was to estimate ASWC based on physical and chemical properties and analyze the spatial distribution of ASWC in China. The pedo-transfer functions (PTFs), derived from 220 survey data of ASWC, and the empirical data of ASWC based on soil texture were applied to quantify the ASWC. GIS technology was used to develop a spatial file of ASWC in China and the spatial distribution of ASWC was also analyzed. The results showed the value of ASWC ranges from 15 × 10-2 cm3·cm-3 to 22 × 10-2 cm3·cm-3 for most soil types, and few soil types are lower than 15 × 10-2 cm3·cm-3 or higher than 22 × 10-2 cm3·cm-3. The ASWC is different according to the complex soil types and their distribution. It is higher in the east than that in the west, and the values reduce from south to north except the northeastern part of China. The "high" values of ASWC appear in southeast, northeastern mountain regions and Northeast China Plain. The relatively "high" values of ASWC appear in Sichuan basin, Huang-Huai-Hai plain and the east of Inner Mongolia. The relatively "low" values are distributed in the west and the Loess Plateau of China. The "very low" value regions are the northern Tibetan Plateau and the desertified areas in northern China. In some regions, the ASWC changes according to the complex topography and different types of soils. Though there remains precision limitation, the spatial data of ASWC derived from this study are improved on current data files of soil water retention properties for Chinese soils. This study presents basic data and analysis methods for estimation and evaluation of ASWC in China.
文摘 Objective To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. Design Multicenter, double-blind, placebo-controlled, parallel-group, randomized clinical trial of 216 sta- ble outpatients with HF, ejection fraction ≥ 50%, elevated N-terminal brain-type natriuretic peptide or elevat- ed invasively measured filling pressures, and reduced exercise capacity. Participants were randomized from October 2008 through February 2012 at 26 centers in North America. Follow-up was through August 30, 2012.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-127)National Natural Science Foundation of China (No. 40671014, 90502007)
文摘This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.