We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman pl...In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman plate theory including geometrical nonlinearity is used to obtain the deflection of the micro-plate. Galerkin decomposition method is then employed, and nonlinear ordinary differential equations (ODEs) of motion are determined. A harmonic balance method (HBM) is applied to equations and analytical relation for nonlineaT frequency response (F-R) curves are derived for two categories (including and neglecting Casimir force) separately. The analytical results for three cases:(1) semi-linear vibration;(2) weakly nonlinear vibration;(3) highly non linear vibration, are validated by comparing with the numerical solutio ns. After validation, the effects of the voltage and Casimir force on the natural frequency of two-sided capacitor system are investigated. It is shown that by assuming Casimir force in small gap distances, reduction of the natural frequency is considerable. The influences of the applied voltage, damping, micro-plate thickness and Casimir force on the frequency response curves have been presented too. The results of this study can be useful for modeling circular parallel-plates in nano /microelectromechanical transducers such as microphones and pressure sensors.展开更多
基于宽边耦合带状线结构,该文设计了一种基于低温共烧陶瓷(LTCC)技术的高隔离低插损3 dB 90°电桥。该电桥使用螺旋耦合线有效地减小了器件尺寸,同时以对称式结构建模更便于后期的优化调整。在宽边螺旋耦合带状线垂直方向引入一个...基于宽边耦合带状线结构,该文设计了一种基于低温共烧陶瓷(LTCC)技术的高隔离低插损3 dB 90°电桥。该电桥使用螺旋耦合线有效地减小了器件尺寸,同时以对称式结构建模更便于后期的优化调整。在宽边螺旋耦合带状线垂直方向引入一个伸入式可调隔离电容,极大地提高了该电桥的隔离度,使其可达27 dB,且插入损耗≤0.2 dB,较之传统的定向耦合器结构,其在提升性能的同时大幅减小了器件尺寸。对耦合线直角拐弯处的电场强度进行分析与优化,采用45°斜切的方式使拐角处的电场强度与直线处大致相等。对上接地金属板进行环形镂空处理,这将改善带内的幅度平衡度。该文设计的3 dB 90°电桥通带为0.96~1.53 GHz,插入损耗≤0.2 dB,幅度平衡度≤±0.7 dB,相位平衡度为90°±1°,隔离度≥27 dB,其具有良好的应用市场。展开更多
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
文摘In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman plate theory including geometrical nonlinearity is used to obtain the deflection of the micro-plate. Galerkin decomposition method is then employed, and nonlinear ordinary differential equations (ODEs) of motion are determined. A harmonic balance method (HBM) is applied to equations and analytical relation for nonlineaT frequency response (F-R) curves are derived for two categories (including and neglecting Casimir force) separately. The analytical results for three cases:(1) semi-linear vibration;(2) weakly nonlinear vibration;(3) highly non linear vibration, are validated by comparing with the numerical solutio ns. After validation, the effects of the voltage and Casimir force on the natural frequency of two-sided capacitor system are investigated. It is shown that by assuming Casimir force in small gap distances, reduction of the natural frequency is considerable. The influences of the applied voltage, damping, micro-plate thickness and Casimir force on the frequency response curves have been presented too. The results of this study can be useful for modeling circular parallel-plates in nano /microelectromechanical transducers such as microphones and pressure sensors.