A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydr...A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydrothermal reaction. As an electro-active material, such nickel-based MOF exhibits superior pseudo- capacitive behavior in KOH aqueous electrolyte with a high specific capacitance of 726 F g-1. Also, it displays good electrochemical stability with 94.6% of the initial capacitance over consecutive 1000 cycles. In addition, a simple asymmetric supercapacitor with a high energy density of 16.5 Wh kg-1 is successfully built using the nickel-based MOF as positive electrode and commercial activated carbon as negative electrode in KOH electrolyte.展开更多
Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells(MFCs).A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/po...Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells(MFCs).A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/polyaniline/manganese dioxide(S/N-CNT/PANI/MnO2)electrode has been developed for MFC anode.Here,the S/N-CNT/PANI/MnO2 anode can function as a biocapacitor,able to store electrons generated from the degradation of organic substrate under the open circuit state and release the accumulated electrons upon requirement.Thus,the mismatching of the production and demand of the electricity can be overcome.Comparing with the sponge/nitrogen-doped carbon nanotube(S/N-CNT)bioanode,S/N-CNT/PANI/MnO2 capacitive bioanode displays a strong interaction with the microbial biofilm,advancing the electron transfer from exoelectrogens to the bioanode.The maximum power density of MFC with S/N-CNT/PANI/MnO2 capacitive bioanode is 1019.5 mW/m^2,which is 2.2 and5.8 times as much as that of S/N-CNT/MnO2 bioanode and S/N-CNT bioanode(470.7 mW/m^2 and176.6 mW/m^2),respectively.During the chronoamperometric experiment with 60 min of charging and 20 min of discharging,the S/N-CNT/PANI/MnO2 capacitive bioanode was able to store 10743.9 C/m^2,whereas the S/N-CNT anode was only able to store 3323.4 C/m^2.With a capacitive bioanode,it is possible to use the MFC simultaneously for production and storage of electricity.展开更多
Dielectric polymers are the materials of choice for high energy density film capacitors.The increasing demand for advanced electrical systems requires dielectric polymers to operate efficiently under extreme condition...Dielectric polymers are the materials of choice for high energy density film capacitors.The increasing demand for advanced electrical systems requires dielectric polymers to operate efficiently under extreme conditions,especially at elevated temperatures.However,the low permittivity and relatively low operating temperature of dielectric polymers limit the high-temperature capacitive energy storage applications.Fortunately,dipolar glass polymers are demonstrated as the preferred materials to achieve high dielectric constant,low dielectric loss and high energy density at elevated temperatures.In this review,we critically elaborate on the recent progress of dipolar glass polymers based on orientational polarization from molecular engineering.In addition,the general design considerations and various dipole moment entities of dipolar glass polymers are described in detail.High dipolar moment,high dipole density and rotation freedom of dipoles are essential for dipolar glass polymers to gain superior dielectric and energy storage properties.Challenges and future opportunities for dipolar glass polymers towards high-temperature energy storage applications are also provided.展开更多
基金supported by the National Natural Science Foundation of China(No.21203223)
文摘A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydrothermal reaction. As an electro-active material, such nickel-based MOF exhibits superior pseudo- capacitive behavior in KOH aqueous electrolyte with a high specific capacitance of 726 F g-1. Also, it displays good electrochemical stability with 94.6% of the initial capacitance over consecutive 1000 cycles. In addition, a simple asymmetric supercapacitor with a high energy density of 16.5 Wh kg-1 is successfully built using the nickel-based MOF as positive electrode and commercial activated carbon as negative electrode in KOH electrolyte.
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
基金supported by the National Natural Science Foundation of China (Nos.21878060 and 21476053)China Scholarship Council (No.201806685019)
文摘Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells(MFCs).A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/polyaniline/manganese dioxide(S/N-CNT/PANI/MnO2)electrode has been developed for MFC anode.Here,the S/N-CNT/PANI/MnO2 anode can function as a biocapacitor,able to store electrons generated from the degradation of organic substrate under the open circuit state and release the accumulated electrons upon requirement.Thus,the mismatching of the production and demand of the electricity can be overcome.Comparing with the sponge/nitrogen-doped carbon nanotube(S/N-CNT)bioanode,S/N-CNT/PANI/MnO2 capacitive bioanode displays a strong interaction with the microbial biofilm,advancing the electron transfer from exoelectrogens to the bioanode.The maximum power density of MFC with S/N-CNT/PANI/MnO2 capacitive bioanode is 1019.5 mW/m^2,which is 2.2 and5.8 times as much as that of S/N-CNT/MnO2 bioanode and S/N-CNT bioanode(470.7 mW/m^2 and176.6 mW/m^2),respectively.During the chronoamperometric experiment with 60 min of charging and 20 min of discharging,the S/N-CNT/PANI/MnO2 capacitive bioanode was able to store 10743.9 C/m^2,whereas the S/N-CNT anode was only able to store 3323.4 C/m^2.With a capacitive bioanode,it is possible to use the MFC simultaneously for production and storage of electricity.
文摘以STC15单片机为核心设计了无线充电自启动小车,主要模块包括继电器控制、无线充电、断电自启动、DC-DC升降压等。根据电磁感应充电技术及超级电容储能特性,实现了小车的无线充电功能。实验表明:当无线充电线圈与接收线圈距离距离为1~3 mm时,充电效果达到最佳,小车行驶距离可达约18 m;当两线圈的距离为8 mm时,超级电容两端的电压为1.76 V.
基金financially supported by the National Natural Science Foundation of China(Nos.51973080,92066104 and 51903100)。
文摘Dielectric polymers are the materials of choice for high energy density film capacitors.The increasing demand for advanced electrical systems requires dielectric polymers to operate efficiently under extreme conditions,especially at elevated temperatures.However,the low permittivity and relatively low operating temperature of dielectric polymers limit the high-temperature capacitive energy storage applications.Fortunately,dipolar glass polymers are demonstrated as the preferred materials to achieve high dielectric constant,low dielectric loss and high energy density at elevated temperatures.In this review,we critically elaborate on the recent progress of dipolar glass polymers based on orientational polarization from molecular engineering.In addition,the general design considerations and various dipole moment entities of dipolar glass polymers are described in detail.High dipolar moment,high dipole density and rotation freedom of dipoles are essential for dipolar glass polymers to gain superior dielectric and energy storage properties.Challenges and future opportunities for dipolar glass polymers towards high-temperature energy storage applications are also provided.