合理设置道路绿化带能够改变街道空气流场进而改善空气质量。利用风洞试验结合数值模型的方法测试了树冠形状和绿化带位置对街道峡谷的风场影响。在数值模型中,采用针对植物模型不同高度赋予不同叶面积密度(leaf area density,LAD)值的...合理设置道路绿化带能够改变街道空气流场进而改善空气质量。利用风洞试验结合数值模型的方法测试了树冠形状和绿化带位置对街道峡谷的风场影响。在数值模型中,采用针对植物模型不同高度赋予不同叶面积密度(leaf area density,LAD)值的新方法近似模拟不同树冠形状的植物,通过输入污染源数据,得到风场及污染物浓度数据结果;与风洞试验结果进行对比,验证了其有效性;进而,利用数值模型分析了不同绿化带设置下街道峡谷内行人的污染暴露特征,结果表明:绿化带位置及树冠形状影响街道峡谷中的涡流结构,形成复杂的细小湍流,从而影响街道峡谷中的风环境和污染物分布。阔叶树冠和位于街道峡谷中央的绿化带位置有利于降低行人污染暴露风险。未来研究中,通过增加风洞试验布点、考虑热力作用及气象因子的影响,或许可以提供更加详细的改善街道峡谷微环境的绿化带布局,为城市大气环境管理和绿地系统建设提供科学依据。展开更多
The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors includi...The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference b-ween the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-i, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.展开更多
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c...Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.展开更多
文摘合理设置道路绿化带能够改变街道空气流场进而改善空气质量。利用风洞试验结合数值模型的方法测试了树冠形状和绿化带位置对街道峡谷的风场影响。在数值模型中,采用针对植物模型不同高度赋予不同叶面积密度(leaf area density,LAD)值的新方法近似模拟不同树冠形状的植物,通过输入污染源数据,得到风场及污染物浓度数据结果;与风洞试验结果进行对比,验证了其有效性;进而,利用数值模型分析了不同绿化带设置下街道峡谷内行人的污染暴露特征,结果表明:绿化带位置及树冠形状影响街道峡谷中的涡流结构,形成复杂的细小湍流,从而影响街道峡谷中的风环境和污染物分布。阔叶树冠和位于街道峡谷中央的绿化带位置有利于降低行人污染暴露风险。未来研究中,通过增加风洞试验布点、考虑热力作用及气象因子的影响,或许可以提供更加详细的改善街道峡谷微环境的绿化带布局,为城市大气环境管理和绿地系统建设提供科学依据。
基金funded by the National Natural Science Foundation of the People's Republic of China(Grant No.40805004)the R&D foundation of Shenzhen(Basic Research ProjectGrant No. 201006020747A)
文摘The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference b-ween the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-i, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.
基金supported by the National Natural Science Foundation of China(Nos.51925808 and 52178516)the Natural Science Foundation of Hunan Province(Nos.2020JJ5745 and 2023JJ20073),China.
文摘Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.