AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 ...AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 PDAC specimens by immunohistochemistry, and in four pancreatic cancer cell lines (SW1990, Miapaca-2, AsPC-1 and BxPC-3) by Western blotting assay. We also analyzed the association between FAP expression in PDAC cells and the clinicopathology of PDAC patients. RESULTS: The results showed that the FAP was expressed in both stromal fibroblast cells (98/134, 73.1%) and carcinoma cells (102/134, 76.1%). All 4 pancreatic cancer cell lines expressed FAP protein at different levels. Protein bands corresponding to the proteolytically active 170-kDa seprase dimer and its88-kDa seprase subunit were identif ied. Higher FAP expression in carcinoma cells was associated with tumor size (P < 0.001), fi brotic focus (P = 0.003), perineural invasion (P = 0.009) and worse clinical outcome (P = 0.0085). CONCLUSION: FAP is highly expressed in carcinoma cells and f ibroblasts in PDAC tissues, and its expression is associated with desmoplasia and worse prognosis.展开更多
Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components.Recent epidemiolog...Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components.Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, wesummarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.展开更多
Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of ...Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of PC cases, is characterized by an intense stromal desmoplastic reaction surrounding the cancer cells. Cancer-associated fibroblasts(CAFs) are the main effector cells in the desmoplastic reaction, and pancreatic stellate cells are the most important source of CAFs. However, other important components of the PC stroma are inflammatory cells and endothelial cells. The aim of this review is to describe the complex interplay between PC cells and the cellular and noncellular components of the tumour stroma. Published data have indicated that the desmoplastic stroma protects PC cells against chemotherapy and radiation therapy and that it might promote the proliferation and migration of PC cells. However, in animal studies, experimental depletion of the desmoplastic stroma and CAFs has led to more aggressive cancers. Hence, the precise role of the tumour stroma in PC remains to be elucidated. However, it is likely that a contextdependent therapeutic modification, rather than pure depletion, of the PC stroma holds potential for the development of new treatment strategies for PC patients.展开更多
Cancer-associated fibroblasts(CAFs) are important components of various types of tumors,including gastric cancer(GC).During tumorigenesis and progression,CAFs play critical roles in tumor invasion and metastasis via a...Cancer-associated fibroblasts(CAFs) are important components of various types of tumors,including gastric cancer(GC).During tumorigenesis and progression,CAFs play critical roles in tumor invasion and metastasis via a series of functions including extracellular matrix deposition,angiogenesis,metabolism reprogramming and chemoresistance.However,the mechanism of the interaction between gastric cancer cells and CAFs remains largely unknown.Micro RNAs(mi RNAs) are a class of non-coding small RNA molecules,and their expression in CAFs not only regulates the expression of a number of target genes but also plays an essential role in the communication between tumor cells and CAFs.In this review,we provide an overview of recent studies on CAF mi RNAs in GC and the relevant signaling pathways in gastrointestinal tumors.Focusing the attention on these signaling pathways may help us better understand their role in tumor invasion and metastasis and identify new molecular targets for therapeutic strategies.展开更多
AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts,and to explore the underlying mechanism.METHODS Paired gastric normal fibroblast(GNF) and gas...AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts,and to explore the underlying mechanism.METHODS Paired gastric normal fibroblast(GNF) and gastric cancer-associated fibroblast(GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside Ⅳ. Conditioned media were prepared from GNFs,GCAFs,control-treated GCAFs,and astragaloside Ⅳ-treated GCAFs,and used to culture BGC-823 human gastric cancer cells. Proliferation,migration and invasion capacities of BGC-823 cells were determined by MTT,wound healing,and Transwell invasion assays,respectively. The action mechanism of astragaloside Ⅳ was investigated by detecting the expression of micro RNAs and the expression and secretion of the oncogenic factor,macrophage colonystimulating factor(M-CSF),and the tumor suppressive factor,tissue inhibitor of metalloproteinase 2(TIMP2),in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined.RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation,migration,and invasion than GNFs(P < 0.01). Astragaloside Ⅳ treatment strongly inhibited the proliferation-,migration-and invasion-promoting capacities of GCAFs(P < 0.05 for 10 μmol/L,P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs,GCAFs expressed a lower level of micro RNA-214(P < 0.01) and a higher level of micro RNA-301 a(P < 0.01). Astragaloside Ⅳ treatment significantly upregulated micro RNA-214 expression(P < 0.01) and down-regulated micro RNA-301 a expression(P < 0.01) in GCAFs. Reestablishing the micro RNA expression balance subsequently suppressed M-CSF production(P < 0.01) and secretion(P < 0.05),and elevated TIMP2 production(P < 0.01) and secretion(P < 0.05). Consequently,the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astraga展开更多
The tumor microenvironment is proposed to contribute substantially to the progression of cancers,including breast cancer.Cancer-associated fibroblasts(CAFs)are the most abundant components of the tumor microenvironmen...The tumor microenvironment is proposed to contribute substantially to the progression of cancers,including breast cancer.Cancer-associated fibroblasts(CAFs)are the most abundant components of the tumor microenvironment.Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors,generating exosomes,releasing nutrients,reshaping the extracellular matrix,and suppressing the function of immune cells.CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers.Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials.Here,we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer.We hope that summarizing CAFrelated studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.展开更多
As a critical component of the tumor microenvironment(TME),cancerassociated fibroblasts(CAFs)play important roles in cancer initiation and progression.Well-known signaling pathways,including the transforming growth fa...As a critical component of the tumor microenvironment(TME),cancerassociated fibroblasts(CAFs)play important roles in cancer initiation and progression.Well-known signaling pathways,including the transforming growth factor-β(TGF-β),Hedgehog(Hh),Notch,Wnt,Hippo,nuclear factor kappa-B(NF-κB),Janus kinase(JAK)/signal transducer and activator of transcription(STAT),mitogen-activated protein kinase(MAPK),and phosphoinositide 3-kinase(PI3K)/AKT pathways,as well as transcription factors,including hypoxia-inducible factor(HIF),heat shock transcription factor 1(HSF1),P53,Snail,and Twist,constitute complex regulatory networks in theTMEtomodulate the formation,activation,heterogeneity,metabolic characteristics and malignant phenotype of CAFs.Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics,and this modulation partially depends on the regulation of signaling cascades.The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures(e.g.,NCT01130142 and NCT01064622).Hence,a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies.Here,we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.展开更多
Breast cancer is the most common malignant tumor in women, and the incidence of this disease has increased in recent years because of changes in diet, living environment, gestational age, and other unknown factors. Pr...Breast cancer is the most common malignant tumor in women, and the incidence of this disease has increased in recent years because of changes in diet, living environment, gestational age, and other unknown factors. Previous studies focused on cancer cells, but an increasing number of recent studies have analyzed the contribution of cancer microenvironment to the initiation and progression of breast cancer. Cancer-associated libroblasts (CAFs), the most abundant cells in tumor stroma, secrete various active biomolecules, including extraceHular matrix components, growth factors, cytokines, proteases, and hormones. CAFs not only facilitate the initiation, growth, angiogenesis, invasion, and metastasis of cancer but also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of breast cancer. In this article, we reviewed the literature and summarized the research findings on CAFs in breast cancer.展开更多
The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells includi...The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells including tumor vascular composing cells, inflammatory cells and fibroblasts. As a major and important component in tumor stroma, increasing evidence has shown that spindle-shaped cancer-associated fibroblasts (CAFs) are a significant modifier of cancer evolution, and promote tumorigenesis, tumor invasion and metastasis by stimulating angiogenesis, malignant cell survival, epithelial-mesenchymal transition (EMT) and proliferation via direct cell-to-cell contact or secretion of soluble factors in most digestive solid tumors. CAFs are thought to be activated, characterized by the expression of α-smooth muscle actin, fibroblast activated protein, fibroblast specific protein, vimentin, fibronectin, etc. They are hypothesized to originate from normal or aged fibroblasts, bone marrow-derived mesenchymal cells, or vascular endothelial cells. EMT may also be an important process generating CAFs, and most probably, CAFs may originate from multiple cells. A close link exists between EMT, tumor stem cells, and chemo-resistance of tumor cells, which is largely orchestrated by CAFs. CAFs significantly induce immunosuppression, and may be a prognostic marker in various malignancies. Targeted therapy toward CAFs has displayed promising anticancer efficacy, which further reinforces the necessity to explore the relationship between CAFs and their hosts.展开更多
Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance.Current treatment prescriptions for desmoplastic tumors are usually not sufficient to ...Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance.Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy.Recently,through modulating cancer-associated fibroblasts(CAFs)which are the most abundant cell type among all stromal cells,natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells,showing promising ability to improve treatment effects on desmoplastic tumors.In this review,we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products,highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.展开更多
Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevate...Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevated neutrophil extracellular traps(NETs)and cancer-associated neurotransmitters(CANTs,e.g.,catecholamines)are firstly identified as two of the dominant inducements.Further,an injectable fibrin-alginate hydrogel with high tissue adhesion has been constructed to specifically co-deliver NETs inhibitor(DNase I)-encapsulated PLGA nanoparticles and an unselectiveβ-adrenergic receptor blocker(propranolol).The two components(i.e.,fibrin and alginate)can respond to two triggers(thrombin and Ca2+,respectively)in postoperative bleeding to gelate,shaping into an interpenetrating network(IPN)featuring high strength.The continuous release of DNase I and PR can wreck NETs and antagonize catecholamines to decrease microvessel density,blockade myeloid-derived suppressor cells,secrete various proinflammatory cytokines,potentiate natural killer cell function and hamper cytotoxic T cell exhaustion.The reprogrammed TME significantly suppress locally residual and distant tumors,induce strong immune memory effects and thus inhibit lung metastasis.Thus,targetedly degrading NETs and blocking CANTs enabled by this in-situ IPN-based hydrogel drug depot provides a simple and efficient approach against SR-induced cancer recurrence and metastasis.展开更多
Adipocyte is the most predominant cell type in the tumor microenvironment of breast cancer and plays a pivotal role in cancer progression,yet the underlying mechanisms and functional mediators remain elusive.We isolat...Adipocyte is the most predominant cell type in the tumor microenvironment of breast cancer and plays a pivotal role in cancer progression,yet the underlying mechanisms and functional mediators remain elusive.We isolated primary preadipocytes from mammary fat pads of human breast cancer patients and generated mature adipocytes and cancer-associated adipocytes(CAAs)in vitro.The CAAs exhibited significantly different gene expression profiles as assessed by transcriptome sequencing.One of the highly expressed genes in CAAs is granulocyte colony-stimulating factor(G-CSF).Treatment with recombinant human G-CSF protein or stable expression of human G-CSF in triple-negative breast cancer(TNBC)cell lines enhanced epithelial–mesenchymal transition,migration,and invasion of cancer cells,by activating Stat3.Accordantly,targeting G-CSF/Stat3 signaling with G-CSF-neutralizing antibody,a chemical inhibitor,or siRNAs for Stat3 could all abrogate CAA-or G-CSF-induced migration and invasion of breast cancer cells.The pro-invasive genes MMP2 and MMP9 were identified as target genes of G-CSF in TNBC cells.Furthermore,in human breast cancer tissues,elevated G-CSF expression in adipocytes is well correlated with activated Stat3 signal in cancer cells.Together,our results suggest a novel strategy to intervene with invasive breast cancers by targeting CAA-derived G-CSF.展开更多
Objective: The aim of this study was to investigate the value of the combined expression of the gastric mucosal differentiation protein pepsinogen C(PGC) and gastric cancer(GC)-associated antigen MG7 for the diagnosis...Objective: The aim of this study was to investigate the value of the combined expression of the gastric mucosal differentiation protein pepsinogen C(PGC) and gastric cancer(GC)-associated antigen MG7 for the diagnosis of GC and prediction of the development from precancerous conditions to GC.Methods: The gastric mucosal biopsies of 285 subjects enrolled from a region with a high incidence of GC were obtained and histopathologically examined. Subjects testing negative for GC(n=208) were followed up from 1998 to 2015. The levels of PGC and MG7 in the biopsies were determined by immunohistochemistry.Results: PGC was positive in 91.4% of the non-atrophic gastritis, 26.5% of the atrophic gastritis, and 0% of the GC. MG7 was positive in 15.0% of the non-atrophic gastritis, 82.4% of the atrophic gastritis, and 94.8% of the GC. The non-atrophic gastritis group was predominantly "PGC+MG7-". The atrophic gastritis and GC groups were predominantly "PGC-MG7+". The rate of GC in subjects with "PGC-MG7+" staining was 113.4-fold higher [95% confidence interval(95% CI): 15.3-869.4, P<0.001] than that in subjects with other staining patterns.The sensitivity and specificity of the "PGC-MG7+" pattern were 92.2% and 78.8% for the detection of GC and77.2% and 97.9% for GC and precancerous disease, respectively. In the follow-up cohort of non-GC subjects, the risk of developing GC was higher in those with the "PGC-MG7+" staining pattern.Conclusions: Our data suggest that the "PGC-MG7+" pattern can be employed as a useful follow-up panel for detecting individuals with a high risk of GC, and the dynamic assessment of the follow-up panel needs multi-centre large-scale validation in the future.展开更多
Cholangiocarcinoma(CCA) is a highly aggressive epithelial malignancy still carrying a dismal prognosis, owing to early lymph node metastatic dissemination and striking resistance to conventional chemotherapy. Although...Cholangiocarcinoma(CCA) is a highly aggressive epithelial malignancy still carrying a dismal prognosis, owing to early lymph node metastatic dissemination and striking resistance to conventional chemotherapy. Although mechanisms underpinning CCA progression are still a conundrum, it is now increasingly recognized that the desmoplastic microenvironment developing in conjunction with biliary carcinogenesis, recently renamed tumor reactive stroma(TRS), behaves as a paramount tumor-promoting driver. Indeed, once being recruited, activated and dangerously co-opted by neoplastic cells, the cellular components of the TRS(myofibroblasts, macrophages, endothelial cells and mesenchymal stem cells) continuously rekindle malignancy by secreting a huge variety of soluble factors(cyto/chemokines, growth factors, morphogens and proteinases). Furthermore, these factors are long-term stored within an abnormally remodeled extracellular matrix(ECM), which in turn can deleteriously mold cancer cell behavior. In this review, we will highlight evidence for the active role played by reactive stromal cells(as well as by the TRS-associated ECM) in CCA progression, including an overview of the most relevant TRS-derived signals possibly fueling CCA cell aggressiveness. Hopefully, a deeper knowledge of the paracrine communications reciprocally exchanged between cancer and stromal cells will steer the development of innovative, combinatorial therapies, which can finally hinder the progression of CCA, as well as of other cancer types with abundant TRS, such as pancreatic and breast carcinomas.展开更多
Objective: Cancer-associated fibroblasts (CAFs) are one of the hallmarks of the cancer microenvironment. Recent evidence has indicated that CAFs are more competent in enhancing cancer cell growth and migration than...Objective: Cancer-associated fibroblasts (CAFs) are one of the hallmarks of the cancer microenvironment. Recent evidence has indicated that CAFs are more competent in enhancing cancer cell growth and migration than normal fibroblasts. However, the unique protein expression of CAFs has not been fully elucidated. This study aims to investigate the characterizations of colon CAFs by comparing the differential protein expression between CAFs and normal fibroblasts. Methods: Primary fibroblasts were isolated from surgical specimen of human colon cancer and matched normal colonic tissue. Purity of the cell population was verified through immunostain analysis. Total cell lysates and conditioned media from each group of cells were extracted, and protein expression analysis was con- ducted using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) ProteinChip platform. Results: Most primary cells showed typical fibroblast-like features after two weeks. Increased proportion of a-smooth muscle actin-positive myofibroblasts was detected within the CAFs in four of the six pairs of primary cells. Fibroblast activation protein was weakly expressed in most cells without differences. Using SELDI-TOF-MS ProteinChip platform, four protein peaks mass over charge ratio (m/z) 1142, 3011, 4035, and 4945 were detected in the total cell lysates, and two protein peaks m/z 1368 and 1389 were detected in the conditioned media. The potential candidate proteins found in the Swiss-Prot database include morphogenetic neuropeptides, FMRFamide-related peptides, insulin-like growth factor II, thymosin 13-4-like protein 3, and tight junction-associated protein 1. Conclusions: Using the SELDI-ProteinChip platform, differential protein expressions were identified in colon CAFs compared with normal colonic stromal fibroblasts. The complex proteomic alternations in colon CAFs may play important roles related to the colon cancer microenvironment.展开更多
BACKGROUND At present,immune checkpoint inhibitors(ICIs)remain the 1st-line therapy me-thod for patients suffering from high microsatellite instability/deficient misma-tch repair metastatic colorectal cancer(mCRC).How...BACKGROUND At present,immune checkpoint inhibitors(ICIs)remain the 1st-line therapy me-thod for patients suffering from high microsatellite instability/deficient misma-tch repair metastatic colorectal cancer(mCRC).However,ICI treatments demon-strate minimal therapeutic efficacy against microsatellite stable(MSS)/proficient mismatch repair(pMMR)CRC.This is mainly because this type of tumor is a“cold tumor”with almost no lymphocyte infiltration.Anti-angiogenic drugs have been found to improve the immune microenvironment by promoting many immune cells to enter the immune microenvironment,thereby exerting anti-tumor effects.AIM To investigate the effects of ICIs combined with bevacizumab monoclonal anti-body on tumor immune cells in MSS/pMMR advanced CRC patients with first-line treatment failure.METHODS A total of 110 MSS/pMMR patients with advanced CRC after first-line treatment failure in the Affiliated Hospital of Qinghai University were enrolled for a ran-domized controlled trial.In short,patients in the experimental group(n=60)were given sintilimab plus bevacizumab for 4 cycles,and those in the control group(n=50)patients were treated with FOLFIRI combined with bevacizumab for 4 cycles.The expression levels of cluster of differentiation(CD)8(+)T cells,tumor-associated macrophages(TAMs),and cancer-associated fibroblasts(CAFs)were comprehensively evaluated to assess the effects of sintilimab combined with bevacizumab on MSS/pMMR advanced CRC sufferers following failure of 1st-line therapy.RESULTS The positive expression rates of CD8(+)T lymphocytes(30%vs 50%),TAMs(23.30%vs 60%),and CAFs(23.30%vs 50%)before and after treatment in both groups exhibited statistical significance(P<0.05).Additionally,the therapeutic effects of both groups(partial remission:26.67%vs 10%;objective response rate:26.70%vs 10%)were significantly different(P<0.05).Although the experimental group showed a higher progression-free survival,median progression-free survival,and disease control rate than the control group,the difference was n展开更多
Within the intricate milieu of colorectal cancer(CRC)tissues,cancer-associated fibroblasts(CAFs)act as pivotal orchestrators,wielding considerable influence over tumor progression.This review endeavors to dissect the ...Within the intricate milieu of colorectal cancer(CRC)tissues,cancer-associated fibroblasts(CAFs)act as pivotal orchestrators,wielding considerable influence over tumor progression.This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC,thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions.Through a comprehensive synthesis of current knowledge,this review delineates insights into CAFsmediated modulation of cancer cell proliferation,invasiveness,immune evasion,and neovascularization,elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors.Additionally,recognizing the high level of heterogeneity within CAFs is crucial,as they encompass a range of subtypes,including myofibroblastic CAFs,inflammatory CAFs,antigen-presenting CAFs,and vessel-associated CAFs.Innovatively,the symbiotic relationship between CAFs and the intestinal microbiota is explored,shedding light on a novel dimension of CRC pathogenesis.Despite remarkable progress,the orchestrated dynamic functions of CAFs remain incompletely deciphered,underscoring the need for continued research endeavors for therapeutic advancements in CRC management.展开更多
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ...Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.展开更多
Anti-cancer therapies usually focus on tumor cells,but non-tumor stromal components in the tumor microenvironment also play vital roles in tumor initiation and progression,which may be the prognostic factors and poten...Anti-cancer therapies usually focus on tumor cells,but non-tumor stromal components in the tumor microenvironment also play vital roles in tumor initiation and progression,which may be the prognostic factors and potential therapeutic targets.Cancer-associated fibroblasts(CAFs)are the essential component in the tumor environment,exhibiting high heterogeneity in their cell origin and phenotype with diverse functions that influence tumor angiogenesis,immune systems,and metabolism.Single-cell RNA sequencing and genetically engineered mouse models have increased our understanding of CAF diversity,and many subtypes have been defined.However,the precise functions of these subtypes need to be studied and validated.Studies of signaling pathways and epigenetic changes in CAFs facilitate understanding of the phenotypes of CAFs and the crosstalk between tumor cells and CAFs to provide potential therapeutic targets.Some clinical trials,including phase III trials targeting CAFs,have been performed recently.However,few of these trials have generated promising results,which indicates that the complexity of CAFs in the tumor microenvironment remains largely unknown,and in-depth investigations of CAFs should be performed.This review summarizes the research on CAFs,focusing on the heterogeneity of their phenotypes and functions,specific signaling pathways,and the therapeutic strategies involving CAFs.Additionally,we briefly discuss the current technologies commonly used in CAF studies and describe the challenges and future perspectives of CAF research.展开更多
Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivati...Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote sternness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer ceils, as well as the potential of MSCs for cancer therapy.展开更多
基金Supported by The National Key Project of Scientific and Technical Supporting Programs of China, No. 2006BAI02A14National Natural Science Foundation of China, No. 30770996 and No. 81172310
文摘AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 PDAC specimens by immunohistochemistry, and in four pancreatic cancer cell lines (SW1990, Miapaca-2, AsPC-1 and BxPC-3) by Western blotting assay. We also analyzed the association between FAP expression in PDAC cells and the clinicopathology of PDAC patients. RESULTS: The results showed that the FAP was expressed in both stromal fibroblast cells (98/134, 73.1%) and carcinoma cells (102/134, 76.1%). All 4 pancreatic cancer cell lines expressed FAP protein at different levels. Protein bands corresponding to the proteolytically active 170-kDa seprase dimer and its88-kDa seprase subunit were identif ied. Higher FAP expression in carcinoma cells was associated with tumor size (P < 0.001), fi brotic focus (P = 0.003), perineural invasion (P = 0.009) and worse clinical outcome (P = 0.0085). CONCLUSION: FAP is highly expressed in carcinoma cells and f ibroblasts in PDAC tissues, and its expression is associated with desmoplasia and worse prognosis.
基金supported by the National Natural Science Foundation of China(Nos.81770562,81602166 and 81703807)grants from the Science and Technology Planning Project of Luzhou,Sichuan Province,China(Nos.2016LZXNYD-Z04 and 2017LZXNYD-J02)
文摘Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components.Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, wesummarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.
基金Supported by University of Southern DenmarkOdense University Hospital Research Fund
文摘Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of PC cases, is characterized by an intense stromal desmoplastic reaction surrounding the cancer cells. Cancer-associated fibroblasts(CAFs) are the main effector cells in the desmoplastic reaction, and pancreatic stellate cells are the most important source of CAFs. However, other important components of the PC stroma are inflammatory cells and endothelial cells. The aim of this review is to describe the complex interplay between PC cells and the cellular and noncellular components of the tumour stroma. Published data have indicated that the desmoplastic stroma protects PC cells against chemotherapy and radiation therapy and that it might promote the proliferation and migration of PC cells. However, in animal studies, experimental depletion of the desmoplastic stroma and CAFs has led to more aggressive cancers. Hence, the precise role of the tumour stroma in PC remains to be elucidated. However, it is likely that a contextdependent therapeutic modification, rather than pure depletion, of the PC stroma holds potential for the development of new treatment strategies for PC patients.
文摘Cancer-associated fibroblasts(CAFs) are important components of various types of tumors,including gastric cancer(GC).During tumorigenesis and progression,CAFs play critical roles in tumor invasion and metastasis via a series of functions including extracellular matrix deposition,angiogenesis,metabolism reprogramming and chemoresistance.However,the mechanism of the interaction between gastric cancer cells and CAFs remains largely unknown.Micro RNAs(mi RNAs) are a class of non-coding small RNA molecules,and their expression in CAFs not only regulates the expression of a number of target genes but also plays an essential role in the communication between tumor cells and CAFs.In this review,we provide an overview of recent studies on CAF mi RNAs in GC and the relevant signaling pathways in gastrointestinal tumors.Focusing the attention on these signaling pathways may help us better understand their role in tumor invasion and metastasis and identify new molecular targets for therapeutic strategies.
基金Supported by the National Natural Science Foundation of China,No.81760552the Program of the Inner Mongolia Natural Science Foundation,No.2016MS0824 and No.2015MS0896+1 种基金the Program of“Keji Baiwan Gongcheng”of Inner Mongolia Medical University,No.YKD2015KJBW008the Supporting Program for Outstanding Youth in Science and Technology of Inner Mongolia Autonomous Region,No.NJYT-17-B30
文摘AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts,and to explore the underlying mechanism.METHODS Paired gastric normal fibroblast(GNF) and gastric cancer-associated fibroblast(GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside Ⅳ. Conditioned media were prepared from GNFs,GCAFs,control-treated GCAFs,and astragaloside Ⅳ-treated GCAFs,and used to culture BGC-823 human gastric cancer cells. Proliferation,migration and invasion capacities of BGC-823 cells were determined by MTT,wound healing,and Transwell invasion assays,respectively. The action mechanism of astragaloside Ⅳ was investigated by detecting the expression of micro RNAs and the expression and secretion of the oncogenic factor,macrophage colonystimulating factor(M-CSF),and the tumor suppressive factor,tissue inhibitor of metalloproteinase 2(TIMP2),in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined.RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation,migration,and invasion than GNFs(P < 0.01). Astragaloside Ⅳ treatment strongly inhibited the proliferation-,migration-and invasion-promoting capacities of GCAFs(P < 0.05 for 10 μmol/L,P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs,GCAFs expressed a lower level of micro RNA-214(P < 0.01) and a higher level of micro RNA-301 a(P < 0.01). Astragaloside Ⅳ treatment significantly upregulated micro RNA-214 expression(P < 0.01) and down-regulated micro RNA-301 a expression(P < 0.01) in GCAFs. Reestablishing the micro RNA expression balance subsequently suppressed M-CSF production(P < 0.01) and secretion(P < 0.05),and elevated TIMP2 production(P < 0.01) and secretion(P < 0.05). Consequently,the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astraga
基金National Natural Science Foundation of China,Grant/Award Numbers:81602471,81672729,81972453,81972597Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LY19H160055,LY19H160059,LR22H160011+2 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2019A610315Cixi Agricultural and Social Development Science and Technology Project,Grant/Award Number:CN2020006Zheng Shu Medical Elite Scholarship Fund。
文摘The tumor microenvironment is proposed to contribute substantially to the progression of cancers,including breast cancer.Cancer-associated fibroblasts(CAFs)are the most abundant components of the tumor microenvironment.Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors,generating exosomes,releasing nutrients,reshaping the extracellular matrix,and suppressing the function of immune cells.CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers.Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials.Here,we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer.We hope that summarizing CAFrelated studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
基金National Natural Science Foundation of China,Grant/Award Numbers:81802352,82002541,81772555,81902428National Science Foundation for Distinguished Young Scholars of China,Grant/Award Number:81625016+4 种基金Shanghai Sailing Program,Grant/Award Number:20YF1409000Shanghai Rising-Star Program,Grant/Award Number:20QA1402100Shanghai Anticancer Association Young Eagle Program,Grant/Award Number:SACA-CY19A06Clinical and Scientific Innovation Project of Shanghai Hospital Development Center,Grant/Award Numbers:SHDC12018109,SHDC12019109Scientific Innovation Project of Shanghai Education Committee,Grant/Award Number:2019-01-07-00-07-E00057。
文摘As a critical component of the tumor microenvironment(TME),cancerassociated fibroblasts(CAFs)play important roles in cancer initiation and progression.Well-known signaling pathways,including the transforming growth factor-β(TGF-β),Hedgehog(Hh),Notch,Wnt,Hippo,nuclear factor kappa-B(NF-κB),Janus kinase(JAK)/signal transducer and activator of transcription(STAT),mitogen-activated protein kinase(MAPK),and phosphoinositide 3-kinase(PI3K)/AKT pathways,as well as transcription factors,including hypoxia-inducible factor(HIF),heat shock transcription factor 1(HSF1),P53,Snail,and Twist,constitute complex regulatory networks in theTMEtomodulate the formation,activation,heterogeneity,metabolic characteristics and malignant phenotype of CAFs.Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics,and this modulation partially depends on the regulation of signaling cascades.The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures(e.g.,NCT01130142 and NCT01064622).Hence,a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies.Here,we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
基金We apologize to those authors whose work was not cited because of space restrictions. This work was supported by a grant from the National Natural Science Foundation of China (No. 30930038).
文摘Breast cancer is the most common malignant tumor in women, and the incidence of this disease has increased in recent years because of changes in diet, living environment, gestational age, and other unknown factors. Previous studies focused on cancer cells, but an increasing number of recent studies have analyzed the contribution of cancer microenvironment to the initiation and progression of breast cancer. Cancer-associated libroblasts (CAFs), the most abundant cells in tumor stroma, secrete various active biomolecules, including extraceHular matrix components, growth factors, cytokines, proteases, and hormones. CAFs not only facilitate the initiation, growth, angiogenesis, invasion, and metastasis of cancer but also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of breast cancer. In this article, we reviewed the literature and summarized the research findings on CAFs in breast cancer.
文摘The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells including tumor vascular composing cells, inflammatory cells and fibroblasts. As a major and important component in tumor stroma, increasing evidence has shown that spindle-shaped cancer-associated fibroblasts (CAFs) are a significant modifier of cancer evolution, and promote tumorigenesis, tumor invasion and metastasis by stimulating angiogenesis, malignant cell survival, epithelial-mesenchymal transition (EMT) and proliferation via direct cell-to-cell contact or secretion of soluble factors in most digestive solid tumors. CAFs are thought to be activated, characterized by the expression of α-smooth muscle actin, fibroblast activated protein, fibroblast specific protein, vimentin, fibronectin, etc. They are hypothesized to originate from normal or aged fibroblasts, bone marrow-derived mesenchymal cells, or vascular endothelial cells. EMT may also be an important process generating CAFs, and most probably, CAFs may originate from multiple cells. A close link exists between EMT, tumor stem cells, and chemo-resistance of tumor cells, which is largely orchestrated by CAFs. CAFs significantly induce immunosuppression, and may be a prognostic marker in various malignancies. Targeted therapy toward CAFs has displayed promising anticancer efficacy, which further reinforces the necessity to explore the relationship between CAFs and their hosts.
基金supported by National Institutes of Health(Grant No.CA198999,USA)the State Key Laboratory of Molecular Engineering of Polymers,Fudan University(China)+3 种基金the National Natural Science Foundation of China(Grant Nos.81202924 and81773909)Shanghai Rising-Star Program of China(Grant No.13QA1403400)Shanghai talent development funds(Grant No.201665,China)Shanghai municipal commission of health and family planning(Grant No.2017YQ060,China)
文摘Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance.Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy.Recently,through modulating cancer-associated fibroblasts(CAFs)which are the most abundant cell type among all stromal cells,natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells,showing promising ability to improve treatment effects on desmoplastic tumors.In this review,we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products,highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.
基金supported by National Natural Science Foundation of China for Youth Scholars(Grant No.82022033,82202241)Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z21022),China Postdoctoral Science Foundation(Grant No.2022MD713749)Sichuan Provincial Science Foundation for Distinguished Young Scholars(24NSFJQ0038).
文摘Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevated neutrophil extracellular traps(NETs)and cancer-associated neurotransmitters(CANTs,e.g.,catecholamines)are firstly identified as two of the dominant inducements.Further,an injectable fibrin-alginate hydrogel with high tissue adhesion has been constructed to specifically co-deliver NETs inhibitor(DNase I)-encapsulated PLGA nanoparticles and an unselectiveβ-adrenergic receptor blocker(propranolol).The two components(i.e.,fibrin and alginate)can respond to two triggers(thrombin and Ca2+,respectively)in postoperative bleeding to gelate,shaping into an interpenetrating network(IPN)featuring high strength.The continuous release of DNase I and PR can wreck NETs and antagonize catecholamines to decrease microvessel density,blockade myeloid-derived suppressor cells,secrete various proinflammatory cytokines,potentiate natural killer cell function and hamper cytotoxic T cell exhaustion.The reprogrammed TME significantly suppress locally residual and distant tumors,induce strong immune memory effects and thus inhibit lung metastasis.Thus,targetedly degrading NETs and blocking CANTs enabled by this in-situ IPN-based hydrogel drug depot provides a simple and efficient approach against SR-induced cancer recurrence and metastasis.
基金This work was supported by grants from the National Natural Science Foundation of China(NSFC31871378 and 31671460 to X.Y.and 81760509 to X.X.)the Natural Science Foundation of Jiangxi Provinee of China(20171ACB21004 to X.Y.and 20181BAB205043 to X.X.).
文摘Adipocyte is the most predominant cell type in the tumor microenvironment of breast cancer and plays a pivotal role in cancer progression,yet the underlying mechanisms and functional mediators remain elusive.We isolated primary preadipocytes from mammary fat pads of human breast cancer patients and generated mature adipocytes and cancer-associated adipocytes(CAAs)in vitro.The CAAs exhibited significantly different gene expression profiles as assessed by transcriptome sequencing.One of the highly expressed genes in CAAs is granulocyte colony-stimulating factor(G-CSF).Treatment with recombinant human G-CSF protein or stable expression of human G-CSF in triple-negative breast cancer(TNBC)cell lines enhanced epithelial–mesenchymal transition,migration,and invasion of cancer cells,by activating Stat3.Accordantly,targeting G-CSF/Stat3 signaling with G-CSF-neutralizing antibody,a chemical inhibitor,or siRNAs for Stat3 could all abrogate CAA-or G-CSF-induced migration and invasion of breast cancer cells.The pro-invasive genes MMP2 and MMP9 were identified as target genes of G-CSF in TNBC cells.Furthermore,in human breast cancer tissues,elevated G-CSF expression in adipocytes is well correlated with activated Stat3 signal in cancer cells.Together,our results suggest a novel strategy to intervene with invasive breast cancers by targeting CAA-derived G-CSF.
基金supported by grants from the National Science and Technology Support Program (No. 2015BAI13B07)the Science Technology Project in Liaoning Province (No. 2012225016).
文摘Objective: The aim of this study was to investigate the value of the combined expression of the gastric mucosal differentiation protein pepsinogen C(PGC) and gastric cancer(GC)-associated antigen MG7 for the diagnosis of GC and prediction of the development from precancerous conditions to GC.Methods: The gastric mucosal biopsies of 285 subjects enrolled from a region with a high incidence of GC were obtained and histopathologically examined. Subjects testing negative for GC(n=208) were followed up from 1998 to 2015. The levels of PGC and MG7 in the biopsies were determined by immunohistochemistry.Results: PGC was positive in 91.4% of the non-atrophic gastritis, 26.5% of the atrophic gastritis, and 0% of the GC. MG7 was positive in 15.0% of the non-atrophic gastritis, 82.4% of the atrophic gastritis, and 94.8% of the GC. The non-atrophic gastritis group was predominantly "PGC+MG7-". The atrophic gastritis and GC groups were predominantly "PGC-MG7+". The rate of GC in subjects with "PGC-MG7+" staining was 113.4-fold higher [95% confidence interval(95% CI): 15.3-869.4, P<0.001] than that in subjects with other staining patterns.The sensitivity and specificity of the "PGC-MG7+" pattern were 92.2% and 78.8% for the detection of GC and77.2% and 97.9% for GC and precancerous disease, respectively. In the follow-up cohort of non-GC subjects, the risk of developing GC was higher in those with the "PGC-MG7+" staining pattern.Conclusions: Our data suggest that the "PGC-MG7+" pattern can be employed as a useful follow-up panel for detecting individuals with a high risk of GC, and the dynamic assessment of the follow-up panel needs multi-centre large-scale validation in the future.
文摘Cholangiocarcinoma(CCA) is a highly aggressive epithelial malignancy still carrying a dismal prognosis, owing to early lymph node metastatic dissemination and striking resistance to conventional chemotherapy. Although mechanisms underpinning CCA progression are still a conundrum, it is now increasingly recognized that the desmoplastic microenvironment developing in conjunction with biliary carcinogenesis, recently renamed tumor reactive stroma(TRS), behaves as a paramount tumor-promoting driver. Indeed, once being recruited, activated and dangerously co-opted by neoplastic cells, the cellular components of the TRS(myofibroblasts, macrophages, endothelial cells and mesenchymal stem cells) continuously rekindle malignancy by secreting a huge variety of soluble factors(cyto/chemokines, growth factors, morphogens and proteinases). Furthermore, these factors are long-term stored within an abnormally remodeled extracellular matrix(ECM), which in turn can deleteriously mold cancer cell behavior. In this review, we will highlight evidence for the active role played by reactive stromal cells(as well as by the TRS-associated ECM) in CCA progression, including an overview of the most relevant TRS-derived signals possibly fueling CCA cell aggressiveness. Hopefully, a deeper knowledge of the paracrine communications reciprocally exchanged between cancer and stromal cells will steer the development of innovative, combinatorial therapies, which can finally hinder the progression of CCA, as well as of other cancer types with abundant TRS, such as pancreatic and breast carcinomas.
基金supported by the National Natural Science Foundation of China (Nos. 81000892, 81071801, and 30801341)the Research Fund for the Doctoral Program of Higher Education of China (No. 200803351107)
文摘Objective: Cancer-associated fibroblasts (CAFs) are one of the hallmarks of the cancer microenvironment. Recent evidence has indicated that CAFs are more competent in enhancing cancer cell growth and migration than normal fibroblasts. However, the unique protein expression of CAFs has not been fully elucidated. This study aims to investigate the characterizations of colon CAFs by comparing the differential protein expression between CAFs and normal fibroblasts. Methods: Primary fibroblasts were isolated from surgical specimen of human colon cancer and matched normal colonic tissue. Purity of the cell population was verified through immunostain analysis. Total cell lysates and conditioned media from each group of cells were extracted, and protein expression analysis was con- ducted using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) ProteinChip platform. Results: Most primary cells showed typical fibroblast-like features after two weeks. Increased proportion of a-smooth muscle actin-positive myofibroblasts was detected within the CAFs in four of the six pairs of primary cells. Fibroblast activation protein was weakly expressed in most cells without differences. Using SELDI-TOF-MS ProteinChip platform, four protein peaks mass over charge ratio (m/z) 1142, 3011, 4035, and 4945 were detected in the total cell lysates, and two protein peaks m/z 1368 and 1389 were detected in the conditioned media. The potential candidate proteins found in the Swiss-Prot database include morphogenetic neuropeptides, FMRFamide-related peptides, insulin-like growth factor II, thymosin 13-4-like protein 3, and tight junction-associated protein 1. Conclusions: Using the SELDI-ProteinChip platform, differential protein expressions were identified in colon CAFs compared with normal colonic stromal fibroblasts. The complex proteomic alternations in colon CAFs may play important roles related to the colon cancer microenvironment.
基金Supported by the 2021 Key Topic of the Qinghai Provincial Health System-Guiding Plan Topic,No.2021-WJZDX-43.
文摘BACKGROUND At present,immune checkpoint inhibitors(ICIs)remain the 1st-line therapy me-thod for patients suffering from high microsatellite instability/deficient misma-tch repair metastatic colorectal cancer(mCRC).However,ICI treatments demon-strate minimal therapeutic efficacy against microsatellite stable(MSS)/proficient mismatch repair(pMMR)CRC.This is mainly because this type of tumor is a“cold tumor”with almost no lymphocyte infiltration.Anti-angiogenic drugs have been found to improve the immune microenvironment by promoting many immune cells to enter the immune microenvironment,thereby exerting anti-tumor effects.AIM To investigate the effects of ICIs combined with bevacizumab monoclonal anti-body on tumor immune cells in MSS/pMMR advanced CRC patients with first-line treatment failure.METHODS A total of 110 MSS/pMMR patients with advanced CRC after first-line treatment failure in the Affiliated Hospital of Qinghai University were enrolled for a ran-domized controlled trial.In short,patients in the experimental group(n=60)were given sintilimab plus bevacizumab for 4 cycles,and those in the control group(n=50)patients were treated with FOLFIRI combined with bevacizumab for 4 cycles.The expression levels of cluster of differentiation(CD)8(+)T cells,tumor-associated macrophages(TAMs),and cancer-associated fibroblasts(CAFs)were comprehensively evaluated to assess the effects of sintilimab combined with bevacizumab on MSS/pMMR advanced CRC sufferers following failure of 1st-line therapy.RESULTS The positive expression rates of CD8(+)T lymphocytes(30%vs 50%),TAMs(23.30%vs 60%),and CAFs(23.30%vs 50%)before and after treatment in both groups exhibited statistical significance(P<0.05).Additionally,the therapeutic effects of both groups(partial remission:26.67%vs 10%;objective response rate:26.70%vs 10%)were significantly different(P<0.05).Although the experimental group showed a higher progression-free survival,median progression-free survival,and disease control rate than the control group,the difference was n
文摘Within the intricate milieu of colorectal cancer(CRC)tissues,cancer-associated fibroblasts(CAFs)act as pivotal orchestrators,wielding considerable influence over tumor progression.This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC,thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions.Through a comprehensive synthesis of current knowledge,this review delineates insights into CAFsmediated modulation of cancer cell proliferation,invasiveness,immune evasion,and neovascularization,elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors.Additionally,recognizing the high level of heterogeneity within CAFs is crucial,as they encompass a range of subtypes,including myofibroblastic CAFs,inflammatory CAFs,antigen-presenting CAFs,and vessel-associated CAFs.Innovatively,the symbiotic relationship between CAFs and the intestinal microbiota is explored,shedding light on a novel dimension of CRC pathogenesis.Despite remarkable progress,the orchestrated dynamic functions of CAFs remain incompletely deciphered,underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
基金Supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)de la Dirección General de Asuntos de Personal Académico,No.IN212722 and No.IA208424Consejo Mexiquense de Ciencia y Tecnología,No.CS000132Consejo Nacional de Humanidades,Ciencia y Tecnología,No.CF-2023-I-563.
文摘Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
基金supported by grants from the Natural Science Foundation of Zhejiang Province,China(No.LQ15H160010)the National Science Foundation of China(No.81702382).
文摘Anti-cancer therapies usually focus on tumor cells,but non-tumor stromal components in the tumor microenvironment also play vital roles in tumor initiation and progression,which may be the prognostic factors and potential therapeutic targets.Cancer-associated fibroblasts(CAFs)are the essential component in the tumor environment,exhibiting high heterogeneity in their cell origin and phenotype with diverse functions that influence tumor angiogenesis,immune systems,and metabolism.Single-cell RNA sequencing and genetically engineered mouse models have increased our understanding of CAF diversity,and many subtypes have been defined.However,the precise functions of these subtypes need to be studied and validated.Studies of signaling pathways and epigenetic changes in CAFs facilitate understanding of the phenotypes of CAFs and the crosstalk between tumor cells and CAFs to provide potential therapeutic targets.Some clinical trials,including phase III trials targeting CAFs,have been performed recently.However,few of these trials have generated promising results,which indicates that the complexity of CAFs in the tumor microenvironment remains largely unknown,and in-depth investigations of CAFs should be performed.This review summarizes the research on CAFs,focusing on the heterogeneity of their phenotypes and functions,specific signaling pathways,and the therapeutic strategies involving CAFs.Additionally,we briefly discuss the current technologies commonly used in CAF studies and describe the challenges and future perspectives of CAF research.
文摘Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote sternness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer ceils, as well as the potential of MSCs for cancer therapy.