In current study, cancer stem-like cells in the murine melanoma B16F10 cells were investigated. CD phenotypes of the B16F10 cells were analyzed by flow cytometry, and the specific CD phenotype cells from the B16F10 ce...In current study, cancer stem-like cells in the murine melanoma B16F10 cells were investigated. CD phenotypes of the B16F10 cells were analyzed by flow cytometry, and the specific CD phenotype cells from the B16F10 cells were isolated by MACS. Then we used colony formation assay in soft agar media, the cell growth assay in serum-free culture media as well as the tumorigenicity investigation of the specific CD phenotype cells in C57BL/6 mice, respectively, to identify cancer stem-like cells in the B16F10 cells. The results showed that the B16F10 cells could form spherical clones in serum-free culture media, and the rate of clonegenesis of CD133^+, CD44^+ and CD44^+CD133^+ cells was higher than that of CD133^-, CD44^- and CD44^+CD133^+ cells in soft agar media, respectively. The tumorigenic potential of CD133^+, CD44^+, CD44^+CD133^+ cells and CD44^+CD133^+CD24^+ cells was stronger than that of CD133^-, CD44^-, CD44^+CD133^- cells and CD44^+CD133^+CD24^- cells in mice, respectively. In conclusion, the CD44^+CD133^+CD24^+ cells have some biological properties of cancer stem-like cells or are highly similar to the characteristics of cancer stem cells (CSC). These results provide an important method for identifying cancer stem-like cells in B16F10 cells and for further cancer target therapy. Cellular & Molecular Immunology.展开更多
HYD-PEP06,an endostatin-modified polypeptide,has been shown to produce effective anticolorectal carcinoma effects through inhibiting epithelial-mesenchymal transition(EMT).However,whether HYD-PEP06 has similar suppres...HYD-PEP06,an endostatin-modified polypeptide,has been shown to produce effective anticolorectal carcinoma effects through inhibiting epithelial-mesenchymal transition(EMT).However,whether HYD-PEP06 has similar suppressive effect on hepatocellular carcinoma(HCC) remained unknown.In this study,HYD-PEP06 inhibited metastasis and EMT but not proliferation in vitro.Cignal finder pathway reporter array and Western blot analysis revealed that HYD-PEP06 suppressed HCCLM3 cell metastasis and EMT by inhibiting the PI3 K/AKT pathway.Moreover,HYD-PEP06 exerted antimetastasis effects in HepG2 cancer stem-like cells(CSCs) via suppressing the WNT/β-catenin signaling pathway.Finally,in HCCLM3 tumor-bearing BALB/c nu/nu nude mice,HYD-PEP06 substantially suppressed tumor growth,lung metastasis and HCC progress.Our results suggest that HYD-PEP06 inhibits the metastasis and EMT of HCC and CSCs as well,and thus has the potential as an agent for HCC treatment.展开更多
Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells.Two major hallmarks of carcino...Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells.Two major hallmarks of carcinogenesis that have been described are angiogenesis and the stem cell characteristic of limitless replicative potential.These properties have been targeted over the past decade in the development of therapeutic treatments for colorectal cancer(CRC),one of the most commonly diagnosed and lethal cancers worldwide.The treatment of solid tumor cancers such as CRC has been challenging due to the heterogeneity of the tumor itself and the chemoresistance of the malignant cells.Furthermore,the same microenvironment that maintains the pool of intestinal stem cells that contribute to the continuous renewal of the intestinal epithelia also provides the necessary conditions for proliferative growth of cancer stem-like cells.These cancer stem-like cells are responsible for the resistance to therapy and cancer recurrence,though they represent less than 2.5%of the tumor mass.The stromal environment surrounding the tumor cells,referred to as the tumor niche,also supports angiogenesis,which supplies the oxygen and nutrients needed for tumor development.Anti-angiogenic therapy,such as with bevacizumab,a monoclonal antibody against vascular-endothelial growth factor,significantly prolongs the survival of metastatic CRC patients.However,such treatments are not completely curative,and a large proportion of patient tumors retain chemoresistance or show recurrence.This article reviews the current knowledge regarding the molecular phenotype of CRC cancer cells,as well as discusses the mechanisms contributing to their maintenance.Future personalized therapeutic approaches that are based on the interaction of the carcinogenic hallmarks,namely angiogenic and proliferative attributes,could improve survival and decrease adverse effects induced by unnecessary chemotherapy.展开更多
Background:Maintenance of cancer stem-like cell(CSC)stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self-renewal and tumor progression.As a key glycolytic enzyme,hexokinase 2(HK2)...Background:Maintenance of cancer stem-like cell(CSC)stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self-renewal and tumor progression.As a key glycolytic enzyme,hexokinase 2(HK2)plays an instrumental role in aerobic glycolysis and tumor progression.However,whether HK2 directly contribute to CSC stemness maintenance in small cell lung cancer(SCLC)is largely unclear.In this study,we aimed to investgate whether HK2 independent of its glycolytic activity is directly involved in stemness maintenance of CSC in SCLC.Methods:Immunoblotting analyses were conducted to determine the expression of HK2 in SCLC CSCs and their differentiated counterparts.CSC-like properties and tumorigenesis of SCLC cells with or without HK2 depletion or overexpression were examined by sphere formation assay and xenograft mouse model.Immunoprecipitation and mass spectrometry analyses were performed to identify the binding proteins of CD133.The expression levels of CD133-associated and CSC-relevant proteins were evaluated by immunoblotting,immunoprecipitation,immunofluorescence,and immunohistochemistry assay.RNA expression levels of Nanog,POU5F1,Lin28,HK2,Prominin-1 were analyzed through quantitative reverse transcription PCR.Polyubiquitination of CD133 was examined by in vitro or in vivo ubiquitination assay.CD133+cells were sorted by flow cytometry using an anti-CD133 antibody.Results:We demonstrated that HK2 expression was much higher in CSCs of SCLC than in their differentiated counterparts.HK2 depletion inhibited CSC stemness and promoted CSC differentiation.Mechanistically,nonmitochondrial HK2 directly interacted with CD133 and enhanced CD133 expression without affecting CD133 mRNA levels.The interaction of HK2 and CD133 promoted the binding of the deubiquitinase ubiquitin-specific protease 11(USP11)to CD133,thereby inhibiting CD133 polyubiquitylation and degradation.HK2-mediated upregulation of CD133 expression enhanced the expression of cell renewal regulators,SCLC cell stemness,and tumor grow展开更多
Sunitinib(SUN)is a multi-targeted receptor tyrosine kinase inhibitor(TKI)that may lead to drug resistance and metastasis because of increased cancer stem-like cells(CSCs)due to the induction of hypoxia.Our group has p...Sunitinib(SUN)is a multi-targeted receptor tyrosine kinase inhibitor(TKI)that may lead to drug resistance and metastasis because of increased cancer stem-like cells(CSCs)due to the induction of hypoxia.Our group has proved that dopamine(DA)can specifically reduce CSC frequency and enhance the response of SUN in drug-resistant breast cancerand non-small cell lung cancer(NSCLC).In this study,DA and SUN combination therapy was investigated in the treatment of pancreatic cancer,a malignant tumor with high mortality rate and very limited therapies.The cytotoxicity assay,clone formation assay and wound healing assay in two pancreatic cancer cell line PANC-1 and SW1990 showed that DA could significantly increase the effect of SUN on cell survival,clone formation ability and migration ability.Besides,SW1990 cell-derived xenograft model and a pancreatic cancer patient-derived xenograft(PDX)model were constructed,further proving that DA could increase the in vivo anti-tumor efficacy of SUN,and could be reversed by SCH23390,a D1 dopamine receptor(D1DR)antagonist.Moreover,the CSC frequency of the combination groups was lower than the control groups or SUN monotherapy groups.In addition,the body weight,H&E staining and blood routine test results showed that the combination therapy was safe.In summary,DA and SUN combination therapy could be a promising strategy for the treatment of pancreatic cancer.展开更多
In order to see whether carbon ion (C-ion) beams have a biological advantage over X-rays, studies were designed to examine the effects of C-ion beams on radiosensitivity in X-ray resistant cells. Clinically relevant X...In order to see whether carbon ion (C-ion) beams have a biological advantage over X-rays, studies were designed to examine the effects of C-ion beams on radiosensitivity in X-ray resistant cells. Clinically relevant X-ray resistant SAS-R cells derived from human tongue cancer SAS cells were used. The cells were exposed to X-rays or Spread-Out Bragg peak (SOBP) beam C-ions. Cell survival was measured using a modified high-density survival assay. Cell survival signaling and cell death signaling were analyzed using flow cytometry. The cells were labeled with putative cancer stem cell markers such as CD44 and CD326. SAS-R cells were 1.6 times more radioresistant than SAS cells after exposure to X-rays. Cell survival was similar in each cell line after exposure to C-ion beams. SAS-R cells displayed enhanced cell survival signaling when compared to SAS cells under normal conditions. On the other hand, the phosphorylation of AKT-related proteins decreased and polycaspase activities were enhanced when cells were irradiated with C-ion beams in both cell lines. More CD44 and CD326 positive cells were seen in SAS-R cells than in SAS cells. Moreover, the marker positive cell numbers significantly decreased after exposure to C-ion beams when compared to X-rays at iso-survival doses in SAS-R cells. C-ion beams efficiently induced cell killing in X-ray resistant cells which displayed activated cell survival signaling and contained more numerous cancer stem-like cells.展开更多
Drug resistance presents one of the major causes for the failure of cancer chemotherapy.Cancer stem-like cells(CSCs),a population of self-renewal cells with high tumorigenicity and innate chemoresistance,can survive c...Drug resistance presents one of the major causes for the failure of cancer chemotherapy.Cancer stem-like cells(CSCs),a population of self-renewal cells with high tumorigenicity and innate chemoresistance,can survive conventional chemotherapy and generate increased resistance.Here,we develop a lipid-polymer hybrid nanoparticle for co-delivery and cell-distinct release of the differentiation-inducing agent,all-trans retinoic acid and the chemotherapeutic drug,doxorubicin to overcome the CSC-associated chemoresistance.The hybrid nanoparticles achieve differential release of the combined drugs in the CSCs and bulk tumor cells by responding to their specific intracellular signal variation.In the hypoxic CSCs,ATRA is released to induce differentiation of the CSCs,and in the differentiating CSCs with decreased chemoresistance,DOX is released upon elevation of reactive oxygen species to cause subsequent cell death.In the bulk tumor cells,the drugs are released synchronously upon the hypoxic and oxidative conditions to exert potent anticancer effect.This cell-distinct drug release enhances the synergistic therapeutic efficacy of ATRA and DOX with different anticancer mechanism.We show that treatment with the hybrid nanoparticle efficiently inhibit the tumor growth and metastasis of the CSC-enriched triple negative breast cancer in the mouse models.展开更多
Despite of recent advances in cancer research and development of new anti-cancer drugs,tumor patients’prognoses have not yet been improved well enough.Treatment failure of tumors is highly attributed to the drug resi...Despite of recent advances in cancer research and development of new anti-cancer drugs,tumor patients’prognoses have not yet been improved well enough.Treatment failure of tumors is highly attributed to the drug resistance of a small population of cancer cell known as cancer stem-like cells(CSCs).CSCs also have the self-renewal activity and differentiation potency,conferring strong tumorigenicity on them.Therefore,development of CSC targeting therapy is urgently needed in order to overcome possible recurrence and metastasis by them after therapy.CSCs show some characteristic features that are not observed in other differentiated cancer cells,which give them higher resistance against conventional chemotherapy or radiotherapy.Targeting such specific features could be useful for CSC eradication.This review will summarize the recent advances in the study of CSC characteristics along with the promising therapeutic strategies targeting them.展开更多
Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell(CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX...Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell(CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas(SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability; cluster of designation(CD) 44, CD133, acetaldehyde dehydrogenase 1(ALDH1), B cell-specific Moloney murine leukemia virus integration site 1(Bmi-1), Nestin, octamer-binding transcription factor 4(Oct4)and reduced expression protein-1(Rex-1) expression with reverse transcription-polymerase chain reaction(RT-PCR); chemoresistance to cisplatin and 5-fluorouracil; and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers(CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts(with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 103 undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers.展开更多
基金supported in part by National Natural Science Foundation of China(No.90406023)Science Foundation of Southeast University(No.9223001446)Science Foundation of Jiangsu Province Hygienical Division,China(No.16230005777).
文摘In current study, cancer stem-like cells in the murine melanoma B16F10 cells were investigated. CD phenotypes of the B16F10 cells were analyzed by flow cytometry, and the specific CD phenotype cells from the B16F10 cells were isolated by MACS. Then we used colony formation assay in soft agar media, the cell growth assay in serum-free culture media as well as the tumorigenicity investigation of the specific CD phenotype cells in C57BL/6 mice, respectively, to identify cancer stem-like cells in the B16F10 cells. The results showed that the B16F10 cells could form spherical clones in serum-free culture media, and the rate of clonegenesis of CD133^+, CD44^+ and CD44^+CD133^+ cells was higher than that of CD133^-, CD44^- and CD44^+CD133^+ cells in soft agar media, respectively. The tumorigenic potential of CD133^+, CD44^+, CD44^+CD133^+ cells and CD44^+CD133^+CD24^+ cells was stronger than that of CD133^-, CD44^-, CD44^+CD133^- cells and CD44^+CD133^+CD24^- cells in mice, respectively. In conclusion, the CD44^+CD133^+CD24^+ cells have some biological properties of cancer stem-like cells or are highly similar to the characteristics of cancer stem cells (CSC). These results provide an important method for identifying cancer stem-like cells in B16F10 cells and for further cancer target therapy. Cellular & Molecular Immunology.
基金the financial support by the National Natural Science Foundation of China (Nos. 81770281, 81730012, and 81861128022)。
文摘HYD-PEP06,an endostatin-modified polypeptide,has been shown to produce effective anticolorectal carcinoma effects through inhibiting epithelial-mesenchymal transition(EMT).However,whether HYD-PEP06 has similar suppressive effect on hepatocellular carcinoma(HCC) remained unknown.In this study,HYD-PEP06 inhibited metastasis and EMT but not proliferation in vitro.Cignal finder pathway reporter array and Western blot analysis revealed that HYD-PEP06 suppressed HCCLM3 cell metastasis and EMT by inhibiting the PI3 K/AKT pathway.Moreover,HYD-PEP06 exerted antimetastasis effects in HepG2 cancer stem-like cells(CSCs) via suppressing the WNT/β-catenin signaling pathway.Finally,in HCCLM3 tumor-bearing BALB/c nu/nu nude mice,HYD-PEP06 substantially suppressed tumor growth,lung metastasis and HCC progress.Our results suggest that HYD-PEP06 inhibits the metastasis and EMT of HCC and CSCs as well,and thus has the potential as an agent for HCC treatment.
基金Supported by Grants from the University of Limoges,Limoges University Hospital,La Ligue Contre le Cancer and the Région Limousin,which was given financial by the ComitéOrientation Recherche Cancer(to Perraud A,Christou N and Akil H)
文摘Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells.Two major hallmarks of carcinogenesis that have been described are angiogenesis and the stem cell characteristic of limitless replicative potential.These properties have been targeted over the past decade in the development of therapeutic treatments for colorectal cancer(CRC),one of the most commonly diagnosed and lethal cancers worldwide.The treatment of solid tumor cancers such as CRC has been challenging due to the heterogeneity of the tumor itself and the chemoresistance of the malignant cells.Furthermore,the same microenvironment that maintains the pool of intestinal stem cells that contribute to the continuous renewal of the intestinal epithelia also provides the necessary conditions for proliferative growth of cancer stem-like cells.These cancer stem-like cells are responsible for the resistance to therapy and cancer recurrence,though they represent less than 2.5%of the tumor mass.The stromal environment surrounding the tumor cells,referred to as the tumor niche,also supports angiogenesis,which supplies the oxygen and nutrients needed for tumor development.Anti-angiogenic therapy,such as with bevacizumab,a monoclonal antibody against vascular-endothelial growth factor,significantly prolongs the survival of metastatic CRC patients.However,such treatments are not completely curative,and a large proportion of patient tumors retain chemoresistance or show recurrence.This article reviews the current knowledge regarding the molecular phenotype of CRC cancer cells,as well as discusses the mechanisms contributing to their maintenance.Future personalized therapeutic approaches that are based on the interaction of the carcinogenic hallmarks,namely angiogenic and proliferative attributes,could improve survival and decrease adverse effects induced by unnecessary chemotherapy.
基金Ministry of Science and Technology of the People’s Republic of China,Grant/Award Number:2020YFA0803300National Natural Science Foundation of China,Grant/Award Numbers:82188102,82030074,82122053,32100574+10 种基金Beijing Municipal Science&Technology Commission,Grant/Award Number:Z191100006619115R&D Program of Beijing Municipal Education commission,Grant/Award Number:KJZD20191002302CAMS Innovation Fund for Medical Science,Grant/Award Numbers:2021-1-I2M-012,2021-I2M-1-067Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,Grant/Award Number:2021-PT310-001Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2021B0101420005Sanming Project of Medicine in Shenzhen,Grant/Award Numbers:SZSM201612097,SZSM201812062Aiyou Foundation,Grant/Award Number:KY201701Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020QH191Zhejiang Natural Science Foundation-Key Project,Grant/Award Number:LD21H160003Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang,Grant/Award Number:2019R01001Zhimin Lu is the Kuancheng Wang Distinguished Chair。
文摘Background:Maintenance of cancer stem-like cell(CSC)stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self-renewal and tumor progression.As a key glycolytic enzyme,hexokinase 2(HK2)plays an instrumental role in aerobic glycolysis and tumor progression.However,whether HK2 directly contribute to CSC stemness maintenance in small cell lung cancer(SCLC)is largely unclear.In this study,we aimed to investgate whether HK2 independent of its glycolytic activity is directly involved in stemness maintenance of CSC in SCLC.Methods:Immunoblotting analyses were conducted to determine the expression of HK2 in SCLC CSCs and their differentiated counterparts.CSC-like properties and tumorigenesis of SCLC cells with or without HK2 depletion or overexpression were examined by sphere formation assay and xenograft mouse model.Immunoprecipitation and mass spectrometry analyses were performed to identify the binding proteins of CD133.The expression levels of CD133-associated and CSC-relevant proteins were evaluated by immunoblotting,immunoprecipitation,immunofluorescence,and immunohistochemistry assay.RNA expression levels of Nanog,POU5F1,Lin28,HK2,Prominin-1 were analyzed through quantitative reverse transcription PCR.Polyubiquitination of CD133 was examined by in vitro or in vivo ubiquitination assay.CD133+cells were sorted by flow cytometry using an anti-CD133 antibody.Results:We demonstrated that HK2 expression was much higher in CSCs of SCLC than in their differentiated counterparts.HK2 depletion inhibited CSC stemness and promoted CSC differentiation.Mechanistically,nonmitochondrial HK2 directly interacted with CD133 and enhanced CD133 expression without affecting CD133 mRNA levels.The interaction of HK2 and CD133 promoted the binding of the deubiquitinase ubiquitin-specific protease 11(USP11)to CD133,thereby inhibiting CD133 polyubiquitylation and degradation.HK2-mediated upregulation of CD133 expression enhanced the expression of cell renewal regulators,SCLC cell stemness,and tumor grow
基金National Natural Science Foundation of China(Grant No.81473277)Innovation Team of Ministry of Education(Grant No.BMU2017TD003)。
文摘Sunitinib(SUN)is a multi-targeted receptor tyrosine kinase inhibitor(TKI)that may lead to drug resistance and metastasis because of increased cancer stem-like cells(CSCs)due to the induction of hypoxia.Our group has proved that dopamine(DA)can specifically reduce CSC frequency and enhance the response of SUN in drug-resistant breast cancerand non-small cell lung cancer(NSCLC).In this study,DA and SUN combination therapy was investigated in the treatment of pancreatic cancer,a malignant tumor with high mortality rate and very limited therapies.The cytotoxicity assay,clone formation assay and wound healing assay in two pancreatic cancer cell line PANC-1 and SW1990 showed that DA could significantly increase the effect of SUN on cell survival,clone formation ability and migration ability.Besides,SW1990 cell-derived xenograft model and a pancreatic cancer patient-derived xenograft(PDX)model were constructed,further proving that DA could increase the in vivo anti-tumor efficacy of SUN,and could be reversed by SCH23390,a D1 dopamine receptor(D1DR)antagonist.Moreover,the CSC frequency of the combination groups was lower than the control groups or SUN monotherapy groups.In addition,the body weight,H&E staining and blood routine test results showed that the combination therapy was safe.In summary,DA and SUN combination therapy could be a promising strategy for the treatment of pancreatic cancer.
文摘In order to see whether carbon ion (C-ion) beams have a biological advantage over X-rays, studies were designed to examine the effects of C-ion beams on radiosensitivity in X-ray resistant cells. Clinically relevant X-ray resistant SAS-R cells derived from human tongue cancer SAS cells were used. The cells were exposed to X-rays or Spread-Out Bragg peak (SOBP) beam C-ions. Cell survival was measured using a modified high-density survival assay. Cell survival signaling and cell death signaling were analyzed using flow cytometry. The cells were labeled with putative cancer stem cell markers such as CD44 and CD326. SAS-R cells were 1.6 times more radioresistant than SAS cells after exposure to X-rays. Cell survival was similar in each cell line after exposure to C-ion beams. SAS-R cells displayed enhanced cell survival signaling when compared to SAS cells under normal conditions. On the other hand, the phosphorylation of AKT-related proteins decreased and polycaspase activities were enhanced when cells were irradiated with C-ion beams in both cell lines. More CD44 and CD326 positive cells were seen in SAS-R cells than in SAS cells. Moreover, the marker positive cell numbers significantly decreased after exposure to C-ion beams when compared to X-rays at iso-survival doses in SAS-R cells. C-ion beams efficiently induced cell killing in X-ray resistant cells which displayed activated cell survival signaling and contained more numerous cancer stem-like cells.
基金supported by the National Natural Science Foundation of China(82273876,81971730,81673381,82104090)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(171028)+2 种基金the Project of State Key Laboratory of Natural Medicines of China Pharmaceutical University(SKLNMZZ202024,China)the Natural Science Foundation of Jiangsu Province(BK20210425,China)the Postdoctoral Research Funding of Jiangsu Province(2021K051A,China).
文摘Drug resistance presents one of the major causes for the failure of cancer chemotherapy.Cancer stem-like cells(CSCs),a population of self-renewal cells with high tumorigenicity and innate chemoresistance,can survive conventional chemotherapy and generate increased resistance.Here,we develop a lipid-polymer hybrid nanoparticle for co-delivery and cell-distinct release of the differentiation-inducing agent,all-trans retinoic acid and the chemotherapeutic drug,doxorubicin to overcome the CSC-associated chemoresistance.The hybrid nanoparticles achieve differential release of the combined drugs in the CSCs and bulk tumor cells by responding to their specific intracellular signal variation.In the hypoxic CSCs,ATRA is released to induce differentiation of the CSCs,and in the differentiating CSCs with decreased chemoresistance,DOX is released upon elevation of reactive oxygen species to cause subsequent cell death.In the bulk tumor cells,the drugs are released synchronously upon the hypoxic and oxidative conditions to exert potent anticancer effect.This cell-distinct drug release enhances the synergistic therapeutic efficacy of ATRA and DOX with different anticancer mechanism.We show that treatment with the hybrid nanoparticle efficiently inhibit the tumor growth and metastasis of the CSC-enriched triple negative breast cancer in the mouse models.
基金This work was supported in part by a Grant-in-Aid for Scientific Research from a Japan Society for Promotion of Science(JSPS)(17K19587,18H02679)a research grant from Japan Agency for Medical Research and Development(AMED)Project for Cancer Research and Therapeutic Evolution(P-CREATE)(No.16cm0106120h0001)Practical Research for Innovative Cancer Control(No.16ck0106194h0001)to Gotoh N.
文摘Despite of recent advances in cancer research and development of new anti-cancer drugs,tumor patients’prognoses have not yet been improved well enough.Treatment failure of tumors is highly attributed to the drug resistance of a small population of cancer cell known as cancer stem-like cells(CSCs).CSCs also have the self-renewal activity and differentiation potency,conferring strong tumorigenicity on them.Therefore,development of CSC targeting therapy is urgently needed in order to overcome possible recurrence and metastasis by them after therapy.CSCs show some characteristic features that are not observed in other differentiated cancer cells,which give them higher resistance against conventional chemotherapy or radiotherapy.Targeting such specific features could be useful for CSC eradication.This review will summarize the recent advances in the study of CSC characteristics along with the promising therapeutic strategies targeting them.
文摘Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell(CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas(SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability; cluster of designation(CD) 44, CD133, acetaldehyde dehydrogenase 1(ALDH1), B cell-specific Moloney murine leukemia virus integration site 1(Bmi-1), Nestin, octamer-binding transcription factor 4(Oct4)and reduced expression protein-1(Rex-1) expression with reverse transcription-polymerase chain reaction(RT-PCR); chemoresistance to cisplatin and 5-fluorouracil; and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers(CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts(with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 103 undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers.