Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of ...Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of paramount importance to gauge the reliabilities and accuracies of these databases. Although many properties have been predicted accurately in these databases,electronic band gap is well known to be underestimated by traditional density functional theory(DFT) calculations under local density approximation(LDA), which becomes a challenging problem for materials database building. Here, we introduce MaterialGo(http://www.pkusam.com/data-base.html), a new database calculating the band structures of crystals using both Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional and Heyd-Scuseria-Ernzerhof(HSE) hybrid functional.Comparing different PBE databases, it is found that their band gaps are consistent when no U parameter is used for transition metal d-state or heavy element f-state to correct their self-interaction error, but rather different when PBE+U are used, mostly because of the different values of U used in different database. HSE calculations under standard parameters will give larger band gaps that are closer to experiment. Based on the high-throughput HSE calculations over 10000 crystal structures, we might have a better understanding of the relationship between crystal structures and electronic structures, which will help us to further explore material genome science and engineering.展开更多
基金supported by the National Key R&D Program of China(Grant No.2016YFB0700600)the Shenzhen Science and Technology Research Grant(Grant No.ZDSYS201707281026184)+1 种基金the Guangdong Key-lab Project(Grant No.2017B0303010130)Wang is supported by the Director Office of Science(SC)、Basic Energy Science(BES)、Materials Science and Engineering Division (MSED) of the US Department of Energy(DOE)under Contract No.DE-AC02-05CH11231 through the Materials Theory program(KC2301)
文摘Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of paramount importance to gauge the reliabilities and accuracies of these databases. Although many properties have been predicted accurately in these databases,electronic band gap is well known to be underestimated by traditional density functional theory(DFT) calculations under local density approximation(LDA), which becomes a challenging problem for materials database building. Here, we introduce MaterialGo(http://www.pkusam.com/data-base.html), a new database calculating the band structures of crystals using both Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional and Heyd-Scuseria-Ernzerhof(HSE) hybrid functional.Comparing different PBE databases, it is found that their band gaps are consistent when no U parameter is used for transition metal d-state or heavy element f-state to correct their self-interaction error, but rather different when PBE+U are used, mostly because of the different values of U used in different database. HSE calculations under standard parameters will give larger band gaps that are closer to experiment. Based on the high-throughput HSE calculations over 10000 crystal structures, we might have a better understanding of the relationship between crystal structures and electronic structures, which will help us to further explore material genome science and engineering.