通过在大面积堆载场地设置监测仪器,进行历时 3 a 的现场监测,对大面积堆载作用下软土地基的变形特性和加载条件、地层条件、排水条件、时间效应等的相关性进行分析研究,揭示了大面积堆载作用下软土地基变形特性不同于常规荷载作用下软...通过在大面积堆载场地设置监测仪器,进行历时 3 a 的现场监测,对大面积堆载作用下软土地基的变形特性和加载条件、地层条件、排水条件、时间效应等的相关性进行分析研究,揭示了大面积堆载作用下软土地基变形特性不同于常规荷载作用下软土地基变形特性的规律,总结了在不同边界条件下软土地基变形和固结沉降的规律,为软土地基的固结沉降分析计算提供依据。展开更多
This study focuses on the application of 3D static model using 3-D seismic and well log data for proper optimization and development of hydrocarbon potential in KN field of Niger Delta Province. 3D Seismic data were u...This study focuses on the application of 3D static model using 3-D seismic and well log data for proper optimization and development of hydrocarbon potential in KN field of Niger Delta Province. 3D Seismic data were used to generate the input interpreted horizon grids and fault polygons. The horizon which cut across the six wells was used for the analysis and detailed petrophysical analysis was carried out. Structural and property modeling (net to gross, porosity, permeability, water saturation and facies) were distributed stochastically within the constructed 3D grid using Sequential Gaussian Simulation and Sequential Indicator Simulation algorithms. The reservoir structural model show system of different oriented growth faults F1 to F6. Faults 1 and Fault 4 are the major growth faults, dipping towards south-west and are quite extensive. A rollover anticline formed as a result of deformation of the sediments deposited on the downthrown block of fault F1. The other faults (2, 3, 5 and 6) are minor fault (synthetic and antithetic). The trapping mechanism is a fault assisted anticlinal closure. Results from well log analysis and petrophysical models classified sand 9 reservoir as a moderate to good reservoir in terms of facies, with good porosity, permeability, moderate net to gross and low water saturation. The volumetric calculation of modeled sand 9 horizon reveals that the (STOIIP) value at the Downthrown and Ramp segment are 15.7 MMbbl and 3.8 MMbbl respectively. This implies that the mapped horizon indicates hydrocarbon accumulation in economic quantity. This study has also demonstrated the effectiveness of 3-D static modeling technique as a tool for better understanding of spatial distribution of discrete and continuous reservoir properties, hence, has provided a framework for future prediction of reservoir performance and production behavior of sand 9 reservoir. However, more horizontal wells should be drilled to enhance optimization of the reservoir.展开更多
The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.74...The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.749. This leads to a challenge for the estimation of water and hydrocarbon sa- turation. Based on the analysis of Purcell equation and assumption that rock resistivity is determined by the parallel connection of numerous capillary resistances, a theoretical expression of cementation factor in terms of porosity and permeability is established. Then, cementation factor can be calculated if the parameters of porosity and permeability are determined. In the field application, porosity can be easily obtained by conventional logs. However, it is a tough challenge to estimate permeability due to the strong heterogeneity of low permeability reservoirs. Thus, the Schlumberger Doll Research (SDR) model derived from NMR logs has been proposed to estimate permeability. Based on the analysis of the theoretical expressions of cementation factor and SDR model, a novel cementation factor prediction model, which is relevant to porosity and logarithmic mean of NMR T2 spectrum (T21m), is derived. The advantage of this model is that all the input information can be acquired from NMR logs accurately. In order to confirm the credibility of the novel model, the resistivity and corresponding laboratory NMR measurements of 27 core samples are conducted. The credibility of the model is confirmed by compar- ing the predicted cementation factors with the core analyzed results. The absolute errors for all core samples are lower than 0.071. Once this model is extended to field application, the accuracy of water and hydrocarbon saturation estimation will be significantly improved.展开更多
文摘通过在大面积堆载场地设置监测仪器,进行历时 3 a 的现场监测,对大面积堆载作用下软土地基的变形特性和加载条件、地层条件、排水条件、时间效应等的相关性进行分析研究,揭示了大面积堆载作用下软土地基变形特性不同于常规荷载作用下软土地基变形特性的规律,总结了在不同边界条件下软土地基变形和固结沉降的规律,为软土地基的固结沉降分析计算提供依据。
文摘This study focuses on the application of 3D static model using 3-D seismic and well log data for proper optimization and development of hydrocarbon potential in KN field of Niger Delta Province. 3D Seismic data were used to generate the input interpreted horizon grids and fault polygons. The horizon which cut across the six wells was used for the analysis and detailed petrophysical analysis was carried out. Structural and property modeling (net to gross, porosity, permeability, water saturation and facies) were distributed stochastically within the constructed 3D grid using Sequential Gaussian Simulation and Sequential Indicator Simulation algorithms. The reservoir structural model show system of different oriented growth faults F1 to F6. Faults 1 and Fault 4 are the major growth faults, dipping towards south-west and are quite extensive. A rollover anticline formed as a result of deformation of the sediments deposited on the downthrown block of fault F1. The other faults (2, 3, 5 and 6) are minor fault (synthetic and antithetic). The trapping mechanism is a fault assisted anticlinal closure. Results from well log analysis and petrophysical models classified sand 9 reservoir as a moderate to good reservoir in terms of facies, with good porosity, permeability, moderate net to gross and low water saturation. The volumetric calculation of modeled sand 9 horizon reveals that the (STOIIP) value at the Downthrown and Ramp segment are 15.7 MMbbl and 3.8 MMbbl respectively. This implies that the mapped horizon indicates hydrocarbon accumulation in economic quantity. This study has also demonstrated the effectiveness of 3-D static modeling technique as a tool for better understanding of spatial distribution of discrete and continuous reservoir properties, hence, has provided a framework for future prediction of reservoir performance and production behavior of sand 9 reservoir. However, more horizontal wells should be drilled to enhance optimization of the reservoir.
基金supported by the Major National Oil&Gas Specific Project of China(No.2011ZX05044)
文摘The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.749. This leads to a challenge for the estimation of water and hydrocarbon sa- turation. Based on the analysis of Purcell equation and assumption that rock resistivity is determined by the parallel connection of numerous capillary resistances, a theoretical expression of cementation factor in terms of porosity and permeability is established. Then, cementation factor can be calculated if the parameters of porosity and permeability are determined. In the field application, porosity can be easily obtained by conventional logs. However, it is a tough challenge to estimate permeability due to the strong heterogeneity of low permeability reservoirs. Thus, the Schlumberger Doll Research (SDR) model derived from NMR logs has been proposed to estimate permeability. Based on the analysis of the theoretical expressions of cementation factor and SDR model, a novel cementation factor prediction model, which is relevant to porosity and logarithmic mean of NMR T2 spectrum (T21m), is derived. The advantage of this model is that all the input information can be acquired from NMR logs accurately. In order to confirm the credibility of the novel model, the resistivity and corresponding laboratory NMR measurements of 27 core samples are conducted. The credibility of the model is confirmed by compar- ing the predicted cementation factors with the core analyzed results. The absolute errors for all core samples are lower than 0.071. Once this model is extended to field application, the accuracy of water and hydrocarbon saturation estimation will be significantly improved.