As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes ...As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes its“Janus nature”strictly regulated by its concentration.Abnormal regulation of calcium signals may cause some diseases;however,artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role.“Calcium overload,”for example,is characterized by excessive enrichment of intracellular Ca^(2+),which irreversibly switches calcium signaling from“positive regulation”to“reverse destruction,”leading to cell death.However,this undesirable death could be defined as“calcicoptosis”to offer a novel approach for cancer treatment.Indeed,Ca^(2+)is involved in various cancer diagnostic and therapeutic events,including calcium overload-induced calcium homeostasis disorder,calcium channels dysregulation,mitochondrial dysfunction,calcium-associated immunoregulation,cell/vascular/tumor calcification,and calcification-mediated CT imaging.In paral-lel,the development of multifunctional calcium-based nanomaterials(e.g.,calcium phosphate,calcium carbonate,calcium peroxide,and hydroxyapatite)is becoming abundantly available.This review will highlight the latest insights of the calcium-based nanomaterials,explain their application,and provide novel perspective.Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.展开更多
Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scale...Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10 -4 mol/L, and oxygen is of 0.2—0.4 atm.展开更多
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character...Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.展开更多
Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions.Biodegradable and environmentally friendly materials,such as calcium lignosulfonate(CaLS),calcium poly(aspartic a...Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions.Biodegradable and environmentally friendly materials,such as calcium lignosulfonate(CaLS),calcium poly(aspartic acid)(PASP-Ca),and calcium polyγ-glutamic acid(γ-PGA-Ca),are known to effectively ameliorate soil acidity.However,their effectiveness in inhibiting soil acidification has not been studied.This study aimed to evaluate the effect of CaLS,PASP-Ca,andγ-PGA-Ca on the resistance of soil toward acidification as directly and indirectly(i.e.,via nitrification)caused by the application of HNO_(3)and urea,respectively.For comparison,Ca(OH)_(2)and lignin were used as the inorganic and organic controls,respectively.Among the materials,γ-PGA-Ca drove the substantial improvements in the pH buffering capacity(pHBC)of the soil and exhibited the greatest potential in inhibiting HNO_(3)-induced soil acidification via protonation of carboxyl,complexing with Al~(3+),and cation exchange processes.Under acidification induced by urea,CaLS was the optimal one in inhibiting acidification and increasing exchangeable acidity during incubation.Furthermore,the sharp reduction in the population sizes of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)confirmed the inhibition of nitrification via CaLS application.Therefore,compared to improving soil pHBC,CaLS may play a more important role in suppressing indirect acidification.Overall,γ-PGA-Ca was superior to PASP-Ca and CaLS in enhancing the soil pHBC and the its resistance to acidification induced by HNO_(3) addition,whereas CaLS was the best at suppressing urea-driven soil acidification by inhibiting nitrification.In conclusion,these results provide a reference for inhibiting soil re-acidification in intensive agricultural systems.展开更多
Large quantities of contaminated biomass due to phytoremediation were disposed through combustion in low-income rural regions of China.This process provided a solution to reduce waste volume and disposal cost.Pilot-sc...Large quantities of contaminated biomass due to phytoremediation were disposed through combustion in low-income rural regions of China.This process provided a solution to reduce waste volume and disposal cost.Pilot-scale combustion trials were conducted for in site disposal at phytoremediation sites.The reaction mechanism of arsenic capture during pilot-scale combustion should be determined to control the arsenic emission in flue gas.This study investigated three Pteris vittata L.biomass with a disposal capacity of 600 kg/d and different arsenic concentrations from three sites in China.The arsenic concentration in flue gas was greater than that of the national standard in the trial with no emission control,and the arsenic concentration in biomass was 486 mg/kg.CaO addition notably reduced arsenic emission in flue gas,and absorption was efficient when CaO was mixed with biomass at 10% of the total weight.For the trial with 10% CaO addition,arsenic recovery from ash reached 76%,which is an ~8-fold increase compared with the control.Synchrotron radiation analysis confirmed that calcium arsenate is the dominant reaction product.展开更多
Calcium-based desulfurization ash(CDA)is mainly produced in dry and semi-dry flue gas desulfurization processes.The property of CDA is extremely unstable because its main component,calcium sulfite,makes it difficult t...Calcium-based desulfurization ash(CDA)is mainly produced in dry and semi-dry flue gas desulfurization processes.The property of CDA is extremely unstable because its main component,calcium sulfite,makes it difficult to be directly applied to the field of building materials.The modification of desulfurization ash can be realized by high-temperature oxidation and wet oxidation.After modification,CDA can be widely used in building materials.Hydrothermal oxidation has broad development prospects because it can complete the oxidation of CDA and the removal of impurity elements at the same time.CDA can be used to prepare high value-added products of calcium sulfate whiskers and ecological rubber fillers.展开更多
The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(A...The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(Al,Zn) crystallizes in space group 14/mmm (A-139). The lattice parameters were calculated to be a = b = 1.1616(2) nm, c = 1.6422(4) nm. Zn atoms occupy the 8h and 16n sites together with Al atoms. The (Ca0.9Sr0.1)8Al3 alloy only contains a single Ca8Al3 phase. The (Ca0.9Sr0.1)8(Al1-xZnx)3 alloys consist of Ca8Al3, CasZn3, Ca and (Ca,Sr)2(Al,Zn) phases when x is from 0.1 to 0.3. As x increasing to 0.4, the alloy consists of (Ca,Sr)E(Al,Zn), Ca8Zn3 and Ca. The hydrogenated (Ca0.9Sr0.1)8Al3 and (Ca0.9Sr0.1)8(Al0.9Zn0.1)3 samples consist of CartE and Al. The (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0.2, 0.3 and 0.4) samples can be hydrogenated into CaH2, Al and CaZnl3 under a hydrogen pressure of 5 MPa at 473 K.展开更多
The firing tests with clay blocks were undertaken to study thefluorine expulsion and retention char- acteristics of calcium-basedmaterials during the firing of brick clays. The results indicate thatfluorine expulsion ...The firing tests with clay blocks were undertaken to study thefluorine expulsion and retention char- acteristics of calcium-basedmaterials during the firing of brick clays. The results indicate thatfluorine expulsion begins at approx. 600-700 deg. C, and the mainportion occurs in 800-1000 deg. C. The mode of firing has someeffects on fluorine expulsion. Additives of calcium-based materialcan reduce fluorine expulsion, which is mainly attributed to theincreased formation of CaF_2 during clay firing. In addition, theoptimum addition tests of 6 calcium-based materials with higherefficiency were carried out in a brick kiln. More than 75/100fluorine is retained in the brick body and there is no adverse effecton brick product. This makes it possible for brickyard to achievenon-polluting production.展开更多
The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigate...The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigated. The PHA composition was analyzed by X-Ray Fluorescence (XRF), the apparent morphology was characterized by scanning electron microscope (SEM), and the phases of the sorbent before and after calcination were examined by X-ray diffraction (XRD). The addition of PHA effectively improved the cyclic stability of the calcium-based sorbent. The optimal molar ratio of SiO_2 in PHA to CaO was around 0.07. Steam had positive effect on keeping porosity of the sorbent at the chemical reaction stage, and improved its CO_2 absorption ability. Steam also reduced the diffusion resistance of the product layer, and depressed the influence of high temperature calcination. It was also found that the steam hydration after calcination was an effective way to recover the absorption ability of the sorbent, while the hydration duration of 10 min was enough.展开更多
During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expoun...During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expounded the combustion fluorine retention agent developing principle,and probed into the high-temperature fluorine retention agent technical approach.The results show that the calcium-based sorbent particle grain size and pore structure also have the bigger influence on the combustion fluorine retention ef- fect,and reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development.展开更多
The H2S removal characteristics of Taxada lime tinder the high temperature of 600-900℃ have been investigated. The test results indicated that this kind of sorbent almost was inert to H2S When temperature lowered dow...The H2S removal characteristics of Taxada lime tinder the high temperature of 600-900℃ have been investigated. The test results indicated that this kind of sorbent almost was inert to H2S When temperature lowered down to 600℃,while its reactivity increased with increased temperature and the equilibrium conversion reached up to over 60% at temperatLlre of 900℃.However, side reactions of H2S in conjunction with high-temperature decomposition and mineral catalysis to elemental sulfur and sulfur dioxide were testified.展开更多
In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combusti...In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.展开更多
基金supported by the Major State Basic Research Development Program of China(No.2017YFA0205201)China Postdoctoral Science Foundation Funded Project(2021M702743)the National Natural Science Foundation of China(NSFC,Nos.81925019,32101113,and U1705281).
文摘As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes its“Janus nature”strictly regulated by its concentration.Abnormal regulation of calcium signals may cause some diseases;however,artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role.“Calcium overload,”for example,is characterized by excessive enrichment of intracellular Ca^(2+),which irreversibly switches calcium signaling from“positive regulation”to“reverse destruction,”leading to cell death.However,this undesirable death could be defined as“calcicoptosis”to offer a novel approach for cancer treatment.Indeed,Ca^(2+)is involved in various cancer diagnostic and therapeutic events,including calcium overload-induced calcium homeostasis disorder,calcium channels dysregulation,mitochondrial dysfunction,calcium-associated immunoregulation,cell/vascular/tumor calcification,and calcification-mediated CT imaging.In paral-lel,the development of multifunctional calcium-based nanomaterials(e.g.,calcium phosphate,calcium carbonate,calcium peroxide,and hydroxyapatite)is becoming abundantly available.This review will highlight the latest insights of the calcium-based nanomaterials,explain their application,and provide novel perspective.Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
文摘Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10 -4 mol/L, and oxygen is of 0.2—0.4 atm.
文摘Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.
基金supported by the Major project of Ministry of Agriculture and Rural Affairs of the People’s Republic of China(No.NK2022180401)the major project of Ministry of Agriculture and Rural Affairs of the People’s Republic of China(No.NK2022180404)。
文摘Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions.Biodegradable and environmentally friendly materials,such as calcium lignosulfonate(CaLS),calcium poly(aspartic acid)(PASP-Ca),and calcium polyγ-glutamic acid(γ-PGA-Ca),are known to effectively ameliorate soil acidity.However,their effectiveness in inhibiting soil acidification has not been studied.This study aimed to evaluate the effect of CaLS,PASP-Ca,andγ-PGA-Ca on the resistance of soil toward acidification as directly and indirectly(i.e.,via nitrification)caused by the application of HNO_(3)and urea,respectively.For comparison,Ca(OH)_(2)and lignin were used as the inorganic and organic controls,respectively.Among the materials,γ-PGA-Ca drove the substantial improvements in the pH buffering capacity(pHBC)of the soil and exhibited the greatest potential in inhibiting HNO_(3)-induced soil acidification via protonation of carboxyl,complexing with Al~(3+),and cation exchange processes.Under acidification induced by urea,CaLS was the optimal one in inhibiting acidification and increasing exchangeable acidity during incubation.Furthermore,the sharp reduction in the population sizes of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)confirmed the inhibition of nitrification via CaLS application.Therefore,compared to improving soil pHBC,CaLS may play a more important role in suppressing indirect acidification.Overall,γ-PGA-Ca was superior to PASP-Ca and CaLS in enhancing the soil pHBC and the its resistance to acidification induced by HNO_(3) addition,whereas CaLS was the best at suppressing urea-driven soil acidification by inhibiting nitrification.In conclusion,these results provide a reference for inhibiting soil re-acidification in intensive agricultural systems.
文摘Large quantities of contaminated biomass due to phytoremediation were disposed through combustion in low-income rural regions of China.This process provided a solution to reduce waste volume and disposal cost.Pilot-scale combustion trials were conducted for in site disposal at phytoremediation sites.The reaction mechanism of arsenic capture during pilot-scale combustion should be determined to control the arsenic emission in flue gas.This study investigated three Pteris vittata L.biomass with a disposal capacity of 600 kg/d and different arsenic concentrations from three sites in China.The arsenic concentration in flue gas was greater than that of the national standard in the trial with no emission control,and the arsenic concentration in biomass was 486 mg/kg.CaO addition notably reduced arsenic emission in flue gas,and absorption was efficient when CaO was mixed with biomass at 10% of the total weight.For the trial with 10% CaO addition,arsenic recovery from ash reached 76%,which is an ~8-fold increase compared with the control.Synchrotron radiation analysis confirmed that calcium arsenate is the dominant reaction product.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51704004).
文摘Calcium-based desulfurization ash(CDA)is mainly produced in dry and semi-dry flue gas desulfurization processes.The property of CDA is extremely unstable because its main component,calcium sulfite,makes it difficult to be directly applied to the field of building materials.The modification of desulfurization ash can be realized by high-temperature oxidation and wet oxidation.After modification,CDA can be widely used in building materials.Hydrothermal oxidation has broad development prospects because it can complete the oxidation of CDA and the removal of impurity elements at the same time.CDA can be used to prepare high value-added products of calcium sulfate whiskers and ecological rubber fillers.
基金This study was financially supported by the National Natural Science Foundation of China (No.50371001)the Scientific Research Foundation for the Candidates of Academic Leaders,Education Department of Anhui Province of China (No.2005hbz08).
文摘The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(Al,Zn) crystallizes in space group 14/mmm (A-139). The lattice parameters were calculated to be a = b = 1.1616(2) nm, c = 1.6422(4) nm. Zn atoms occupy the 8h and 16n sites together with Al atoms. The (Ca0.9Sr0.1)8Al3 alloy only contains a single Ca8Al3 phase. The (Ca0.9Sr0.1)8(Al1-xZnx)3 alloys consist of Ca8Al3, CasZn3, Ca and (Ca,Sr)2(Al,Zn) phases when x is from 0.1 to 0.3. As x increasing to 0.4, the alloy consists of (Ca,Sr)E(Al,Zn), Ca8Zn3 and Ca. The hydrogenated (Ca0.9Sr0.1)8Al3 and (Ca0.9Sr0.1)8(Al0.9Zn0.1)3 samples consist of CartE and Al. The (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0.2, 0.3 and 0.4) samples can be hydrogenated into CaH2, Al and CaZnl3 under a hydrogen pressure of 5 MPa at 473 K.
文摘The firing tests with clay blocks were undertaken to study thefluorine expulsion and retention char- acteristics of calcium-basedmaterials during the firing of brick clays. The results indicate thatfluorine expulsion begins at approx. 600-700 deg. C, and the mainportion occurs in 800-1000 deg. C. The mode of firing has someeffects on fluorine expulsion. Additives of calcium-based materialcan reduce fluorine expulsion, which is mainly attributed to theincreased formation of CaF_2 during clay firing. In addition, theoptimum addition tests of 6 calcium-based materials with higherefficiency were carried out in a brick kiln. More than 75/100fluorine is retained in the brick body and there is no adverse effecton brick product. This makes it possible for brickyard to achievenon-polluting production.
基金supported by the National Natural Science Foundation of China (Grant No. 51406198)
文摘The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigated. The PHA composition was analyzed by X-Ray Fluorescence (XRF), the apparent morphology was characterized by scanning electron microscope (SEM), and the phases of the sorbent before and after calcination were examined by X-ray diffraction (XRD). The addition of PHA effectively improved the cyclic stability of the calcium-based sorbent. The optimal molar ratio of SiO_2 in PHA to CaO was around 0.07. Steam had positive effect on keeping porosity of the sorbent at the chemical reaction stage, and improved its CO_2 absorption ability. Steam also reduced the diffusion resistance of the product layer, and depressed the influence of high temperature calcination. It was also found that the steam hydration after calcination was an effective way to recover the absorption ability of the sorbent, while the hydration duration of 10 min was enough.
基金the National Natural Science Foundation of China(50476032)China Postdoctoral Science Foundation(2004035555)New Century of Talents Scheme Projects of Universities in Liaoning Province(RC-04-04)
文摘During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expounded the combustion fluorine retention agent developing principle,and probed into the high-temperature fluorine retention agent technical approach.The results show that the calcium-based sorbent particle grain size and pore structure also have the bigger influence on the combustion fluorine retention ef- fect,and reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development.
文摘The H2S removal characteristics of Taxada lime tinder the high temperature of 600-900℃ have been investigated. The test results indicated that this kind of sorbent almost was inert to H2S When temperature lowered down to 600℃,while its reactivity increased with increased temperature and the equilibrium conversion reached up to over 60% at temperatLlre of 900℃.However, side reactions of H2S in conjunction with high-temperature decomposition and mineral catalysis to elemental sulfur and sulfur dioxide were testified.
基金the National Natural Science Foundation of China(50476032)China Postdoctoral Science Foundation(2004035555)New Century of Talents Scheme Projects of Universities in Liaoning Province(RC-04-04)
文摘In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.