The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting di...The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA(explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.展开更多
The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stres...The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stressed cable truss (SGSPCT) is widely started to apply after the 1980’s with Serres building. The advantages of these systems are to provide the transparency on the fa?ades and speedy construction process with minimum materials. The disadvantages are: more expensive than other systems and so many details for the joints and load distribution calculations. There are three different architectural design typologies of the SGSPCT system. These are distance bridging systems, between floor system and independent body. These three different typologies can be seen on the same building at the same time. This system has been known as complex structure systems. The twenty five glass buildings which are designed in different systems have been analyzed during this study. After these analyses the five glass buildings which are designed with cable-truss system have been selected for scope of the study. These selected buildings have been included of three different cable-truss system typologies and degree. The methodology of this study is literature survey and building analyses method. The written and visual documents involve books, theses, reports, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings have been detailed analyzed with their architectural drawings, photographs and details. The study consists of five chapters including the introduction chapter. The general information of the glass building and cable-glass system has been mentioned in the first chapter. The structural features, details and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of these selected buildings have been done according to their schematic drawings with the plans, sections and lo展开更多
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio...In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.展开更多
基金National Science Foundation of China under Grant Nos.51378031 and 51578019Natural Science Foundation of Beijing under Grant No.8152006Project of Key Laboratory of Urban Security and Disaster Engineering of MOE under Grant No.USDE201401
文摘The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA(explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.
文摘The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stressed cable truss (SGSPCT) is widely started to apply after the 1980’s with Serres building. The advantages of these systems are to provide the transparency on the fa?ades and speedy construction process with minimum materials. The disadvantages are: more expensive than other systems and so many details for the joints and load distribution calculations. There are three different architectural design typologies of the SGSPCT system. These are distance bridging systems, between floor system and independent body. These three different typologies can be seen on the same building at the same time. This system has been known as complex structure systems. The twenty five glass buildings which are designed in different systems have been analyzed during this study. After these analyses the five glass buildings which are designed with cable-truss system have been selected for scope of the study. These selected buildings have been included of three different cable-truss system typologies and degree. The methodology of this study is literature survey and building analyses method. The written and visual documents involve books, theses, reports, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings have been detailed analyzed with their architectural drawings, photographs and details. The study consists of five chapters including the introduction chapter. The general information of the glass building and cable-glass system has been mentioned in the first chapter. The structural features, details and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of these selected buildings have been done according to their schematic drawings with the plans, sections and lo
基金provided by the National Basic Research 973 Program of China (No. 2013CB036003)the National Natural Science Foundation of China (No. 51374198)the Annual College Graduate Research and Innovation Projects of Jiangsu Province of China (No. KYLX15_1402)
文摘In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.