期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法
被引量:
12
1
作者
夏坚
周利君
张伟
《福建建设科技》
2022年第1期19-22,60,共5页
针对传统的裂缝检测方法存在裂缝样本数量少、检测效率低下、准确率不高等问题,本文提出了一种迁移学习与VGG16深度神经网络相结合的新型裂缝检测方法。该检测方法主要包括三个步骤:首先将获取的裂缝图像进行缩放、裁剪、翻转等预处理...
针对传统的裂缝检测方法存在裂缝样本数量少、检测效率低下、准确率不高等问题,本文提出了一种迁移学习与VGG16深度神经网络相结合的新型裂缝检测方法。该检测方法主要包括三个步骤:首先将获取的裂缝图像进行缩放、裁剪、翻转等预处理来进行数据集的增强;其次在Image Net数据集上进行网络的预训练,并将VGG16深度神经网络作为基础网络,将预训练的权重迁移到建筑物裂缝数据集进行训练;最后对训练好的网络进行测试。实验结果表明,该方法在建筑物裂缝数据集上的准确率达到92.20%,相较于只使用VGG16深度网络,其准确率提高了2.06%。研究表明,采用基于VGG16深度神经网络与迁移学习相结合的裂缝检测方法能够解决样本数量较少,准确率不高的问题,可为建筑物裂缝检测提供新的解决途径。
展开更多
关键词
迁移学习
图像预处理
VGG16网络
建筑裂缝检测
下载PDF
职称材料
题名
基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法
被引量:
12
1
作者
夏坚
周利君
张伟
机构
福建省建筑科学研究院有限责任公司
福建省绿色建筑技术重点实验室
福州大学土木工程学院
出处
《福建建设科技》
2022年第1期19-22,60,共5页
基金
福建省科技计划引导性项目(2018Y0021)。
文摘
针对传统的裂缝检测方法存在裂缝样本数量少、检测效率低下、准确率不高等问题,本文提出了一种迁移学习与VGG16深度神经网络相结合的新型裂缝检测方法。该检测方法主要包括三个步骤:首先将获取的裂缝图像进行缩放、裁剪、翻转等预处理来进行数据集的增强;其次在Image Net数据集上进行网络的预训练,并将VGG16深度神经网络作为基础网络,将预训练的权重迁移到建筑物裂缝数据集进行训练;最后对训练好的网络进行测试。实验结果表明,该方法在建筑物裂缝数据集上的准确率达到92.20%,相较于只使用VGG16深度网络,其准确率提高了2.06%。研究表明,采用基于VGG16深度神经网络与迁移学习相结合的裂缝检测方法能够解决样本数量较少,准确率不高的问题,可为建筑物裂缝检测提供新的解决途径。
关键词
迁移学习
图像预处理
VGG16网络
建筑裂缝检测
Keywords
Transfer
learning
image
preprocessing
Vgg16
network
building
crack
detection
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—控制科学与工程]
TU746 [建筑科学—建筑技术科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法
夏坚
周利君
张伟
《福建建设科技》
2022
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部