Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering...Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.展开更多
当前,缺陷跟踪系统通过缺陷报告实现缺陷与修复者的匹配。然而,以往的缺陷分派模型过于依赖缺陷报告的文本质量,引入自然语言中大量的冗余信息,并忽略了缺陷报告的元字段作为标签属性时存在于修复者之间的社区关系,使得模型结果表现较...当前,缺陷跟踪系统通过缺陷报告实现缺陷与修复者的匹配。然而,以往的缺陷分派模型过于依赖缺陷报告的文本质量,引入自然语言中大量的冗余信息,并忽略了缺陷报告的元字段作为标签属性时存在于修复者之间的社区关系,使得模型结果表现较差。针对以上问题,本文提出一种基于多头自注意力机制的深度缺陷分派模型MSDBT(Multi-head Self-attention Deep Bug Triage)。对缺陷报告的文本内容以及根据元字段生成的修复者序列进行向量化;通过多头自注意力机制在内部的输入元素之间进行并行注意力计算。在4个开源软件项目上的实验结果表明,MSDBT在召回率指标上较之前模型具有明显的优势。展开更多
文摘Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.
文摘当前,缺陷跟踪系统通过缺陷报告实现缺陷与修复者的匹配。然而,以往的缺陷分派模型过于依赖缺陷报告的文本质量,引入自然语言中大量的冗余信息,并忽略了缺陷报告的元字段作为标签属性时存在于修复者之间的社区关系,使得模型结果表现较差。针对以上问题,本文提出一种基于多头自注意力机制的深度缺陷分派模型MSDBT(Multi-head Self-attention Deep Bug Triage)。对缺陷报告的文本内容以及根据元字段生成的修复者序列进行向量化;通过多头自注意力机制在内部的输入元素之间进行并行注意力计算。在4个开源软件项目上的实验结果表明,MSDBT在召回率指标上较之前模型具有明显的优势。