High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H...High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.展开更多
Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. R...Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. Results show air stripping is not suitable for the recovery of BA from the wastewater. Axial concentration of BA had a noted maximum point along the column. In contrast, solvent sublation is very effective to recover BA from the wastewater. In solvent sublation experiments, axial concentration of BA along the column first increased and then decreased from the bottom to the top because of two primary mass transport processes. One is the transport by adsorption or attachment to ascending bubbles, and the other is by dispersion at water-solvent interface and by water film in organic solvent layer. In order to elucidate the high removal efficiency in solvent sublation, the microstructure of the wastewater was studied with optic microscope, which was showed to be an emulsion of BA in water at large concentration of BA. Solvent sublation can be successfully used in the removal of BA from its emulsion in the wastewater. The surface tension of simulated solution composed of lysozyme and BA was studied to understand mutual effect of biological materials and BA. Results show that lysozyme affects the adsorption of BA at air-water interface and they may form a complex between BA and lysozyme molecules.展开更多
This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve ...This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve as the main-wing for low-Reynolds-number aircrafts such as micro air vehicles. Reynolds number dependency on aerodynamics is also evaluated at low Reynolds numbers. The results of the study show that the owl-like airfoil has high lift performance with a nonlinear lift increase due to the presence of a separation bubble on the suction side. A distinctive flow feature of the owl airfoil is a separation bubble on the pressure side at low angles of attack. The separation bubble switches location from the pressure side to the suction side as the angle of attack increases and is continuously present on the surface within a wide range of angles of attack. The Reynolds number dependency on the lift curves is insignificant, although differences in the drag curves are especially pronounced at high angles of attack. Eventually, we obtain the geometric feature of the owl-like airfoil to increase aerodynamic performance at low Reynolds numbers.展开更多
文摘High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.
基金Supported by the National Natural Science Foundation of China (No. 20406021, No. 20236050 and No. 20221603).
文摘Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. Results show air stripping is not suitable for the recovery of BA from the wastewater. Axial concentration of BA had a noted maximum point along the column. In contrast, solvent sublation is very effective to recover BA from the wastewater. In solvent sublation experiments, axial concentration of BA along the column first increased and then decreased from the bottom to the top because of two primary mass transport processes. One is the transport by adsorption or attachment to ascending bubbles, and the other is by dispersion at water-solvent interface and by water film in organic solvent layer. In order to elucidate the high removal efficiency in solvent sublation, the microstructure of the wastewater was studied with optic microscope, which was showed to be an emulsion of BA in water at large concentration of BA. Solvent sublation can be successfully used in the removal of BA from its emulsion in the wastewater. The surface tension of simulated solution composed of lysozyme and BA was studied to understand mutual effect of biological materials and BA. Results show that lysozyme affects the adsorption of BA at air-water interface and they may form a complex between BA and lysozyme molecules.
文摘This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve as the main-wing for low-Reynolds-number aircrafts such as micro air vehicles. Reynolds number dependency on aerodynamics is also evaluated at low Reynolds numbers. The results of the study show that the owl-like airfoil has high lift performance with a nonlinear lift increase due to the presence of a separation bubble on the suction side. A distinctive flow feature of the owl airfoil is a separation bubble on the pressure side at low angles of attack. The separation bubble switches location from the pressure side to the suction side as the angle of attack increases and is continuously present on the surface within a wide range of angles of attack. The Reynolds number dependency on the lift curves is insignificant, although differences in the drag curves are especially pronounced at high angles of attack. Eventually, we obtain the geometric feature of the owl-like airfoil to increase aerodynamic performance at low Reynolds numbers.