为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立...为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立了气泡群声散射模型。首先将气泡群划分成立方体网格,然后应用图像处理方法获取立方体网格内气泡群的尺寸分布函数,接着使用EMT计算了每个立方体网格中的声反射系数和声波入射到立方体网格中产生的衰减,最后利用声波叠加原理计算了模拟器的反向散射目标强度。不同参数下的数值分析结果表明,气泡群尺寸分布函数呈伽马分布时,目标强度较高;目标强度随着尺寸分布区间减小和孔隙率增大而变大;共振频率随孔隙率增大而降低。结合气泡群孔隙率分布模型,文中给出了一组在低频时具有较高目标强度的小尺寸模拟器设计参数,可供相关设计者参考。展开更多
In order to model the Fermi bubbles we apply the theory of the superbubble (SB). A thermal model and a self-gravitating model are reviewed. We introduce a third model based on the momentum conservation of a thin layer...In order to model the Fermi bubbles we apply the theory of the superbubble (SB). A thermal model and a self-gravitating model are reviewed. We introduce a third model based on the momentum conservation of a thin layer which propagates in a medium with an inverse square dependence for the density. A comparison has been made between the sections of the three models and the section of an observed map of the Fermi bubbles. An analytical law for the SB expansion as a function of the time and polar angle is deduced. We derive a new analytical result for the image formation of the Fermi bubbles in an elliptical framework.展开更多
文摘为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立了气泡群声散射模型。首先将气泡群划分成立方体网格,然后应用图像处理方法获取立方体网格内气泡群的尺寸分布函数,接着使用EMT计算了每个立方体网格中的声反射系数和声波入射到立方体网格中产生的衰减,最后利用声波叠加原理计算了模拟器的反向散射目标强度。不同参数下的数值分析结果表明,气泡群尺寸分布函数呈伽马分布时,目标强度较高;目标强度随着尺寸分布区间减小和孔隙率增大而变大;共振频率随孔隙率增大而降低。结合气泡群孔隙率分布模型,文中给出了一组在低频时具有较高目标强度的小尺寸模拟器设计参数,可供相关设计者参考。
文摘In order to model the Fermi bubbles we apply the theory of the superbubble (SB). A thermal model and a self-gravitating model are reviewed. We introduce a third model based on the momentum conservation of a thin layer which propagates in a medium with an inverse square dependence for the density. A comparison has been made between the sections of the three models and the section of an observed map of the Fermi bubbles. An analytical law for the SB expansion as a function of the time and polar angle is deduced. We derive a new analytical result for the image formation of the Fermi bubbles in an elliptical framework.