Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice ...Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice floes and a moving ship. The pancake ice floes are modelled with three-dimensional (3-D) dilated disk elements considering the buoyancy, drag force and additional mass induced by the current. The ship hull is modelled with 3D disks with overlaps. Ice loads on the ship hull are determined through the contact detection between ice floe element and ship hull element and the contact force calculation. The influences of different ice conditions (current velocities and directions, ice thicknesses, concentrations and ice floe sizes) and ship speeds are also examined on the dynamic ice force. The simulated results are compared qualitatively well with the existing field data and other numerical results. This work can be helpful in the shil3 structure design and the navigation securitv in ice-covered fields.展开更多
The trapezoidal cross-section roadway, driven along with its medium and fine grain sandstone roof in special thick stratum, was situated in shale strata. Rock-lining wall was employed in roadway, which its roof is in ...The trapezoidal cross-section roadway, driven along with its medium and fine grain sandstone roof in special thick stratum, was situated in shale strata. Rock-lining wall was employed in roadway, which its roof is in the free situation. Under the action of virgin stress, the surrounding rock of roadway was in stability. While under the action of fixed abutment pressure arisen from protection pillar of roadway, which its two sides?seams were extracted, free strong roof of roadway was in the stability. But its two sides?rock-lining walls was fractured, partially broken into pieces, and its floor heave was ob-vious. The velocity of floor heave is 0.4~0.8 mm/d. The size of broken zone of sur-rounding rock of roadway increases doubly. An effective load coefficient of surrounding rock to was quoted illustrate these phenomena. The main reasons of roadway conver-gence are that, rock property of surrounding rock is inferior, protection pillar affects its stability, and supporting pattern employed is improper. At last, effective measures to control roadway convergence should be bolting and grouting lining, which mainly con-solidates surrounding rock of roadway.展开更多
基金The Special Funding for National Marine Commonwealth Industry of China under contract Nos 201105016 and 2012418007the National Natural Science Foundation of China under contract No.41176012
文摘Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice floes and a moving ship. The pancake ice floes are modelled with three-dimensional (3-D) dilated disk elements considering the buoyancy, drag force and additional mass induced by the current. The ship hull is modelled with 3D disks with overlaps. Ice loads on the ship hull are determined through the contact detection between ice floe element and ship hull element and the contact force calculation. The influences of different ice conditions (current velocities and directions, ice thicknesses, concentrations and ice floe sizes) and ship speeds are also examined on the dynamic ice force. The simulated results are compared qualitatively well with the existing field data and other numerical results. This work can be helpful in the shil3 structure design and the navigation securitv in ice-covered fields.
基金Supported by Science Technology Research Project of Henan Province (0124150301)
文摘The trapezoidal cross-section roadway, driven along with its medium and fine grain sandstone roof in special thick stratum, was situated in shale strata. Rock-lining wall was employed in roadway, which its roof is in the free situation. Under the action of virgin stress, the surrounding rock of roadway was in stability. While under the action of fixed abutment pressure arisen from protection pillar of roadway, which its two sides?seams were extracted, free strong roof of roadway was in the stability. But its two sides?rock-lining walls was fractured, partially broken into pieces, and its floor heave was ob-vious. The velocity of floor heave is 0.4~0.8 mm/d. The size of broken zone of sur-rounding rock of roadway increases doubly. An effective load coefficient of surrounding rock to was quoted illustrate these phenomena. The main reasons of roadway conver-gence are that, rock property of surrounding rock is inferior, protection pillar affects its stability, and supporting pattern employed is improper. At last, effective measures to control roadway convergence should be bolting and grouting lining, which mainly con-solidates surrounding rock of roadway.